Pregled bibliografske jedinice broj: 1159197
Outdoor daytime multi-illuminant color constancy
Outdoor daytime multi-illuminant color constancy // Proceedings of the 12th International Symposium on Image and Signal Processing and Analysis
Zagreb, Hrvatska, 2021. str. 270-275 doi:10.1109/ISPA52656.2021.9552092 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1159197 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Outdoor daytime multi-illuminant color constancy
Autori
Domislović, Ilija ; Vrsnak, Donik ; Subašić, Marko ; Lončarić, Sven
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 12th International Symposium on Image and Signal Processing and Analysis
/ - , 2021, 270-275
Skup
International Symposium on Image and Signal Processing and Analysis
Mjesto i datum
Zagreb, Hrvatska, 13.09.2021. - 15.09.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
multi-illuminant estimation, multi-illuminant dataset, color constancy, convolutional neural networks
Sažetak
White-balancing is an important part of the image processing pipeline and is used in many computer vision applica- tions. It removes the chromatic influence of the illumination on objects in the scene. White balancing is important in tasks such as object detection and object tracking. This problem is tackled in a myriad of ways, but most methods use the assumption that images contain only one dominant uniform illuminant. In recent years, neural networks have been used to create state-of-the-art methods for single illuminant white-balancing, but the problem of multi-illuminant white-balancing has been largely ignored. The main reason for this is the lack of multi-illuminant datasets. In this paper, we introduce a convolutional neural network for multi-illuminant (sun and shadow) illumination estimation. For the training and testing of the created model over 100 outdoor daytime images were taken using the Canon EOS 550D camera. We show that the model outperforms existing statistics-based methods on the test data.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb