Pregled bibliografske jedinice broj: 1156017
Croatian POS Tagger as a Prerequisite for Knowledge Extraction in Intelligent Tutoring Systems
Croatian POS Tagger as a Prerequisite for Knowledge Extraction in Intelligent Tutoring Systems // HCII 2021: Adaptive Instructional Systems. Design and Evaluation: Proceedings, Part I / Sottilare, Robert A. ; Schwarz, Jessica (ur.).
Cham: Springer, 2021. str. 334-345 doi:10.1007/978-3-030-77857-6_23 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1156017 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Croatian POS Tagger as a Prerequisite for Knowledge Extraction in Intelligent Tutoring Systems
Autori
Vasić, Daniel ; Žitko, Branko ; Grubišić, Ani ; Stankov, Slavomir ; Gašpar, Angelina ; Šarić-Grgić, Ines ; Tomaš, Suzana ; Peraić, Ivan ; Markić-Vučić, Matea
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
HCII 2021: Adaptive Instructional Systems. Design and Evaluation: Proceedings, Part I
/ Sottilare, Robert A. ; Schwarz, Jessica - Cham : Springer, 2021, 334-345
ISBN
978-3-030-77857-6
Skup
3rd International Conference on Adaptive Instructional Systems, AIS 2021, Held as Part of the 23rd HCI International Conference, HCII 2021
Mjesto i datum
Online, 24.07.2021. - 29.07.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Natural language processing ; Knowledge extraction ; Part of Speech tagging ; Intelligent Tutoring Systems
Sažetak
In this article we present an knowledge extraction approach that can be used in systems that implement teaching in a fully automated manner. These systems are called Intelligent Tutoring Systems (ITS) and are conceived around the idea of one-to-one teaching. Many such systems use natural language processing to improve the communication interface between student and the system. These techniques can be also used on the content creator side to semi- automate or fully automate the task of teaching content creation. In such systems the knowledge representation plays a crucial role to successfully implement teaching and encourage learning. The output of the knowledge extraction phase is a knowledge in the form of a hyper graph that can be used for adaption to the students current knowledge level. We present a deep neural network architecture for precise POS tagging of words written in languages that are morphologically rich. Using sparse representations for words in this task increases the vector space and makes learning more complex. This problem can be solved to some extent by using traditional vector representations but there is also the problem with representing words that are ambiguous. Proposed architecture uses a Bidirectional Encoder Representations from Transformers (BERT) model that is pre-trained on Croatian language to achieve state-of-the-art accuracy for POS tagging.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
--N00014-20-1-2066 - Poboljšavanje prilagodljivog računalom oblikovanog nastavnog sadržaja temeljenog na obradi prirodnog jezika (E-AC&NL Tutor) (Grubišić, Ani) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Split,
Katolički bogoslovni fakultet, Split,
Filozofski fakultet u Splitu
Profili:
Slavomir Stankov
(autor)
Suzana Tomaš
(autor)
Angelina Gašpar
(autor)
Ivan Peraić
(autor)
Branko Žitko
(autor)
Ani Grubišić
(autor)
Ines Šarić-Grgić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus