Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1154893

The ABC of linear regression analysis: What every author and editor should know


Baždarić, Ksenija; Sverko, Dina; Salarić, Ivan; Martinović, Anna; Lucijanić, Marko
The ABC of linear regression analysis: What every author and editor should know // European science editing, 47 (2021), e63780, 9 doi:10.3897/ese.2021.e63780 (međunarodna recenzija, članak, ostalo)


CROSBI ID: 1154893 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
The ABC of linear regression analysis: What every author and editor should know

Autori
Baždarić, Ksenija ; Sverko, Dina ; Salarić, Ivan ; Martinović, Anna ; Lucijanić, Marko

Izvornik
European science editing (0258-3127) 47 (2021); E63780, 9

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, ostalo

Ključne riječi
causal language ; linear models ; prediction ; regression analysis ; reporting ; residuals ; statistics

Sažetak
Regression analysis is a widely used statistical technique to build a model from a set of data on two or more variables. Linear regression is based on linear correlation, and assumes that change in one variable is accompanied by a proportional change in another variable. Simple linear regression, or bivariate regression, is used for predicting the value of one variable from another variable (predictor) ; however, multiple linear regression, which enables us to analyse more than one predictor or variable, is more commonly used. This paper explains both simple and multiple linear regressions illustrated with an example of analysis and also discusses some common errors in presenting the results of regression, including inappropriate titles, causal language, inappropriate conclusions, and misinterpretation.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Interdisciplinarne prirodne znanosti, Temeljne medicinske znanosti, Kognitivna znanost (prirodne, tehničke, biomedicina i zdravstvo, društvene i humanističke znanosti)



POVEZANOST RADA


Ustanove:
Medicinski fakultet, Rijeka,
Stomatološki fakultet, Zagreb,
Klinička bolnica "Dubrava",
Sveučilište u Zadru,
Sveučilište u Zagrebu,
Sveučilište u Rijeci

Poveznice na cjeloviti tekst rada:

doi ese.arphahub.com

Citiraj ovu publikaciju:

Baždarić, Ksenija; Sverko, Dina; Salarić, Ivan; Martinović, Anna; Lucijanić, Marko
The ABC of linear regression analysis: What every author and editor should know // European science editing, 47 (2021), e63780, 9 doi:10.3897/ese.2021.e63780 (međunarodna recenzija, članak, ostalo)
Baždarić, K., Sverko, D., Salarić, I., Martinović, A. & Lucijanić, M. (2021) The ABC of linear regression analysis: What every author and editor should know. European science editing, 47, e63780, 9 doi:10.3897/ese.2021.e63780.
@article{article, author = {Ba\v{z}dari\'{c}, Ksenija and Sverko, Dina and Salari\'{c}, Ivan and Martinovi\'{c}, Anna and Lucijani\'{c}, Marko}, year = {2021}, pages = {9}, DOI = {10.3897/ese.2021.e63780}, chapter = {e63780}, keywords = {causal language, linear models, prediction, regression analysis, reporting, residuals, statistics}, journal = {European science editing}, doi = {10.3897/ese.2021.e63780}, volume = {47}, issn = {0258-3127}, title = {The ABC of linear regression analysis: What every author and editor should know}, keyword = {causal language, linear models, prediction, regression analysis, reporting, residuals, statistics}, chapternumber = {e63780} }
@article{article, author = {Ba\v{z}dari\'{c}, Ksenija and Sverko, Dina and Salari\'{c}, Ivan and Martinovi\'{c}, Anna and Lucijani\'{c}, Marko}, year = {2021}, pages = {9}, DOI = {10.3897/ese.2021.e63780}, chapter = {e63780}, keywords = {causal language, linear models, prediction, regression analysis, reporting, residuals, statistics}, journal = {European science editing}, doi = {10.3897/ese.2021.e63780}, volume = {47}, issn = {0258-3127}, title = {The ABC of linear regression analysis: What every author and editor should know}, keyword = {causal language, linear models, prediction, regression analysis, reporting, residuals, statistics}, chapternumber = {e63780} }

Časopis indeksira:


  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font