Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1154869

Reinforcement Learning Approaches to Optimal Market Making


Gašperov, Bruno; Begušić, Stjepan; Posedel Šimović, Petra; Kostanjčar, Zvonko
Reinforcement Learning Approaches to Optimal Market Making // Mathematics, 9 (2021), 21; 2689, 22 doi:10.3390/math9212689 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1154869 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Reinforcement Learning Approaches to Optimal Market Making

Autori
Gašperov, Bruno ; Begušić, Stjepan ; Posedel Šimović, Petra ; Kostanjčar, Zvonko

Izvornik
Mathematics (2227-7390) 9 (2021), 21; 2689, 22

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
deep reinforcement learning ; reinforcement learning ; finance ; market making ; machine learning ;

Sažetak
Market making is the process whereby a market participant, called a market maker, simultaneously and repeatedly posts limit orders on both sides of the limit order book of a security in order to both provide liquidity and generate profit. Optimal market making entails dynamic adjustment of bid and ask prices in response to the market maker’s current inventory level and market conditions with the goal of maximizing a risk-adjusted return measure. This problem is naturally framed as a Markov decision process, a discrete-time stochastic (inventory) control process. Reinforcement learning, a class of techniques based on learning from observations and used for solving Markov decision processes, lends itself particularly well to it. Recent years have seen a very strong uptick in the popularity of such techniques in the field, fueled in part by a series of successes of deep reinforcement learning in other domains. The primary goal of this paper is to provide a comprehensive and up-to-date overview of the current state-of-the-art applications of (deep) reinforcement learning focused on optimal market making. The analysis indicated that reinforcement learning techniques provide superior performance in terms of the risk-adjusted return over more standard market making strategies, typically derived from analytical models.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti, Ekonomija



POVEZANOST RADA


Projekti:
HRZZ-IP-2019-04-5241 - Algoritmi dubokog podržanog učenja za upravljanje rizicima (DREAM) (Kostanjčar, Zvonko, HRZZ ) ( CroRIS)
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Agronomski fakultet, Zagreb

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Gašperov, Bruno; Begušić, Stjepan; Posedel Šimović, Petra; Kostanjčar, Zvonko
Reinforcement Learning Approaches to Optimal Market Making // Mathematics, 9 (2021), 21; 2689, 22 doi:10.3390/math9212689 (međunarodna recenzija, članak, znanstveni)
Gašperov, B., Begušić, S., Posedel Šimović, P. & Kostanjčar, Z. (2021) Reinforcement Learning Approaches to Optimal Market Making. Mathematics, 9 (21), 2689, 22 doi:10.3390/math9212689.
@article{article, author = {Ga\v{s}perov, Bruno and Begu\v{s}i\'{c}, Stjepan and Posedel \v{S}imovi\'{c}, Petra and Kostanj\v{c}ar, Zvonko}, year = {2021}, pages = {22}, DOI = {10.3390/math9212689}, chapter = {2689}, keywords = {deep reinforcement learning, reinforcement learning, finance, market making, machine learning, }, journal = {Mathematics}, doi = {10.3390/math9212689}, volume = {9}, number = {21}, issn = {2227-7390}, title = {Reinforcement Learning Approaches to Optimal Market Making}, keyword = {deep reinforcement learning, reinforcement learning, finance, market making, machine learning, }, chapternumber = {2689} }
@article{article, author = {Ga\v{s}perov, Bruno and Begu\v{s}i\'{c}, Stjepan and Posedel \v{S}imovi\'{c}, Petra and Kostanj\v{c}ar, Zvonko}, year = {2021}, pages = {22}, DOI = {10.3390/math9212689}, chapter = {2689}, keywords = {deep reinforcement learning, reinforcement learning, finance, market making, machine learning, }, journal = {Mathematics}, doi = {10.3390/math9212689}, volume = {9}, number = {21}, issn = {2227-7390}, title = {Reinforcement Learning Approaches to Optimal Market Making}, keyword = {deep reinforcement learning, reinforcement learning, finance, market making, machine learning, }, chapternumber = {2689} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font