Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1153656

Generating ultrasonic images indistinguishable from real images using Generative Adversarial Networks


Posilović, Luka; Medak, Duje; Subašić, Marko; Budimir, Marko; Lončarić, Sven
Generating ultrasonic images indistinguishable from real images using Generative Adversarial Networks // Ultrasonics, 119 (2021), 106610, 10 doi:10.1016/j.ultras.2021.106610 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1153656 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Generating ultrasonic images indistinguishable from real images using Generative Adversarial Networks

Autori
Posilović, Luka ; Medak, Duje ; Subašić, Marko ; Budimir, Marko ; Lončarić, Sven

Izvornik
Ultrasonics (0041-624X) 119 (2021); 106610, 10

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Non-destructive testing ; Ultrasonic testing ; Synthetic Data Generation ; Generative Adversarial Network ; Deep learning

Sažetak
Ultrasonic imaging is widely used for non- destructive evaluation in various industry applications. Early detection of defects in materials is the key to keeping the integrity of inspected structures. Currently, there have been some attempts to develop models for automated defect detection on ultrasonic data. To push the performance of these models even further more data is needed to train deep convolutional neural networks. A lot of data is also needed for training human experts. However, gathering a sufficient amount of data for training is a challenge due to the rare occurrence of defects in real inspection scenarios. This is why inspection results heavily depend on the inspector’s previous experience. To overcome these challenges, we propose the use of Generative Adversarial Networks for generating realistic ultrasonic images. To the best of our knowledge, this work is the first one to show that a Generative Adversarial Network is able to generate images indistinguishable from real ultrasonic images. The most thorough statistical quality analysis to date of generated ultrasonic images has been conducted with the participation of human expert inspectors. The experimental results show that images generated using our Generative Adversarial Network provide the highest quality images compared to other published methods.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
INETEC

Profili:

Avatar Url Marko Subašić (autor)

Avatar Url Sven Lončarić (autor)

Avatar Url Marko Budimir (autor)

Avatar Url Duje Medak (autor)

Avatar Url Luka Posilović (autor)

Poveznice na cjeloviti tekst rada:

doi doi.org

Citiraj ovu publikaciju:

Posilović, Luka; Medak, Duje; Subašić, Marko; Budimir, Marko; Lončarić, Sven
Generating ultrasonic images indistinguishable from real images using Generative Adversarial Networks // Ultrasonics, 119 (2021), 106610, 10 doi:10.1016/j.ultras.2021.106610 (međunarodna recenzija, članak, znanstveni)
Posilović, L., Medak, D., Subašić, M., Budimir, M. & Lončarić, S. (2021) Generating ultrasonic images indistinguishable from real images using Generative Adversarial Networks. Ultrasonics, 119, 106610, 10 doi:10.1016/j.ultras.2021.106610.
@article{article, author = {Posilovi\'{c}, Luka and Medak, Duje and Suba\v{s}i\'{c}, Marko and Budimir, Marko and Lon\v{c}ari\'{c}, Sven}, year = {2021}, pages = {10}, DOI = {10.1016/j.ultras.2021.106610}, chapter = {106610}, keywords = {Non-destructive testing, Ultrasonic testing, Synthetic Data Generation, Generative Adversarial Network, Deep learning}, journal = {Ultrasonics}, doi = {10.1016/j.ultras.2021.106610}, volume = {119}, issn = {0041-624X}, title = {Generating ultrasonic images indistinguishable from real images using Generative Adversarial Networks}, keyword = {Non-destructive testing, Ultrasonic testing, Synthetic Data Generation, Generative Adversarial Network, Deep learning}, chapternumber = {106610} }
@article{article, author = {Posilovi\'{c}, Luka and Medak, Duje and Suba\v{s}i\'{c}, Marko and Budimir, Marko and Lon\v{c}ari\'{c}, Sven}, year = {2021}, pages = {10}, DOI = {10.1016/j.ultras.2021.106610}, chapter = {106610}, keywords = {Non-destructive testing, Ultrasonic testing, Synthetic Data Generation, Generative Adversarial Network, Deep learning}, journal = {Ultrasonics}, doi = {10.1016/j.ultras.2021.106610}, volume = {119}, issn = {0041-624X}, title = {Generating ultrasonic images indistinguishable from real images using Generative Adversarial Networks}, keyword = {Non-destructive testing, Ultrasonic testing, Synthetic Data Generation, Generative Adversarial Network, Deep learning}, chapternumber = {106610} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font