Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1151589

EEG Signal Multichannel Frequency-Domain Ratio Indices for Drowsiness Detection Based on Multicriteria Optimization


Stančin, Igor; Frid, Nikolina; Cifrek, Mario; Jović, Alan
EEG Signal Multichannel Frequency-Domain Ratio Indices for Drowsiness Detection Based on Multicriteria Optimization // Sensors, 21 (2021), 20; 6932, 23 doi:10.3390/s21206932 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1151589 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
EEG Signal Multichannel Frequency-Domain Ratio Indices for Drowsiness Detection Based on Multicriteria Optimization

Autori
Stančin, Igor ; Frid, Nikolina ; Cifrek, Mario ; Jović, Alan

Izvornik
Sensors (1424-8220) 21 (2021), 20; 6932, 23

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
drowsiness detection ; EEG ; frequency-domain features ; multicriteria optimization ; machine learning

Sažetak
Drowsiness is a risk to human lives in many occupations and activities where full awareness is essential for the safe operation of systems and vehicles, such as driving a car or flying an airplane. Although it is one of the main causes of many road accidents, there is still no reliable definition of drowsiness or a system to reliably detect it. Many researchers have observed correlations between frequency-domain features of the EEG signal and drowsiness, such as an increase in the spectral power of the theta band or a decrease in the spectral power of the beta band. In addition, features calculated as ratio indices between these frequency-domain features show further improvements in detecting drowsiness compared to frequency-domain features alone. This work aims to develop novel multichannel ratio indices that take advantage of the diversity of frequency-domain features from different brain regions. In contrast to the state-of-the-art, we use an evolutionary metaheuristic algorithm to find the nearly optimal set of features and channels from which the indices are calculated. Our results show that drowsiness is best described by the powers in delta and alpha bands. Compared to seven existing single-channel ratio indices, our two novel six-channel indices show improvements in (1) statistically significant differences observed between wakefulness and drowsiness segments, (2) precision of drowsiness detection and classification accuracy of the XGBoost algorithm and (3) model performance by saving time and memory during classification. Our work suggests that a more precise definition of drowsiness is needed, and that accurate early detection of drowsiness should be based on multichannel frequency-domain features.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Alan Jović (autor)

Avatar Url Nikolina Frid (autor)

Avatar Url Igor Stančin (autor)

Avatar Url Mario Cifrek (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Stančin, Igor; Frid, Nikolina; Cifrek, Mario; Jović, Alan
EEG Signal Multichannel Frequency-Domain Ratio Indices for Drowsiness Detection Based on Multicriteria Optimization // Sensors, 21 (2021), 20; 6932, 23 doi:10.3390/s21206932 (međunarodna recenzija, članak, znanstveni)
Stančin, I., Frid, N., Cifrek, M. & Jović, A. (2021) EEG Signal Multichannel Frequency-Domain Ratio Indices for Drowsiness Detection Based on Multicriteria Optimization. Sensors, 21 (20), 6932, 23 doi:10.3390/s21206932.
@article{article, author = {Stan\v{c}in, Igor and Frid, Nikolina and Cifrek, Mario and Jovi\'{c}, Alan}, year = {2021}, pages = {23}, DOI = {10.3390/s21206932}, chapter = {6932}, keywords = {drowsiness detection, EEG, frequency-domain features, multicriteria optimization, machine learning}, journal = {Sensors}, doi = {10.3390/s21206932}, volume = {21}, number = {20}, issn = {1424-8220}, title = {EEG Signal Multichannel Frequency-Domain Ratio Indices for Drowsiness Detection Based on Multicriteria Optimization}, keyword = {drowsiness detection, EEG, frequency-domain features, multicriteria optimization, machine learning}, chapternumber = {6932} }
@article{article, author = {Stan\v{c}in, Igor and Frid, Nikolina and Cifrek, Mario and Jovi\'{c}, Alan}, year = {2021}, pages = {23}, DOI = {10.3390/s21206932}, chapter = {6932}, keywords = {drowsiness detection, EEG, frequency-domain features, multicriteria optimization, machine learning}, journal = {Sensors}, doi = {10.3390/s21206932}, volume = {21}, number = {20}, issn = {1424-8220}, title = {EEG Signal Multichannel Frequency-Domain Ratio Indices for Drowsiness Detection Based on Multicriteria Optimization}, keyword = {drowsiness detection, EEG, frequency-domain features, multicriteria optimization, machine learning}, chapternumber = {6932} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font