Pregled bibliografske jedinice broj: 1149503
AROI: Annotated Retinal OCT Images Database
AROI: Annotated Retinal OCT Images Database // MIPRO 2021 44th International Convention Proceedings / Skala, Karolj (ur.).
Opatija, Hrvatska: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2021. str. 400-405 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1149503 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
AROI: Annotated Retinal OCT Images
Database
Autori
Melinščak, Martina ; Radmilović, Marin ; Vatavuk, Zoran ; Lončarić, Sven
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
MIPRO 2021 44th International Convention Proceedings
/ Skala, Karolj - : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2021, 400-405
Skup
44th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2021)
Mjesto i datum
Opatija, Hrvatska, 27.09.2021. - 01.10.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
annotated image database ; retinal OCT images ; automatic segmentation
Sažetak
The development of optical coherence tomography (OCT) devices has significantly influenced diagnostics and therapy guidance in ophthalmology. The growing number of available images results in the increasing importance of introducing robust algorithms for automatic segmentation in clinical practice. With advances in computer vision in recent years, development of algorithms for segmentation of the retinal structure and/or pathological biomarkers have intensified. However, we are experiencing a reproducibility crisis due to a lack of openly available databases. In this paper we give an overview of a new openly available Annotated Retinal OCT Image (AROI) database that we have developed as a result of the collaboration of one research institution and one hospital. It consists of 1136 annotated B-scans (from 24 patients suffering from age-related macular degeneration) and associated raw high-resolution images. In each B-scan, three retinal layers and three retinal fluids were annotated by an ophthalmologist. Results for intra- and inter-observer errors are obtained to set a baseline for ML algorithms validation. We believe that the AROI database offers many possibilities for the computer vision research community specialized in retinal images and represents a step towards developing a robust artificial intelligence system in ophthalmology.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
KBC "Sestre Milosrdnice",
Veleučilište u Karlovcu