Pregled bibliografske jedinice broj: 1148367
Machine learning guided genetic algorithm for the discovery of novel antimicrobial peptides
Machine learning guided genetic algorithm for the discovery of novel antimicrobial peptides // 4th RSC‐BMCS / RSC‐CICAG Artificial Intelligence in Chemistry Symposium
London, Ujedinjeno Kraljevstvo, 2021. str. /-/ (poster, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1148367 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Machine learning guided genetic algorithm for the discovery of novel antimicrobial peptides
Autori
Njirjak, Marko ; Otović Erik ; Kalafatović, Daniela ; Mauša, Goran
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
4th RSC‐BMCS / RSC‐CICAG Artificial Intelligence in Chemistry Symposium
Mjesto i datum
London, Ujedinjeno Kraljevstvo, 27.09.2021. - 28.09.2021
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Machine learning ; Genetic algorithm ; Antimicrobial ; Peptides
Sažetak
By exploring chemical space, researchers try to find novel compounds with favourable features, such as anticancer, antimicrobial or antiviral activity, to combat antibiotic resistant bacteria, facilitate drug delivery or discover new therapeutics. With in vitro experiments being time- and resource-intensive, interest in computationally assisted exploration of chemical space is on the rise. In silico methods can quickly screen thousands of compounds in a matter of hours, filter the most prosperous ones, and thereby speed-up the process while saving resources. In this paper, we present a genetic algorithm guided by machine learning model for the discovery of novel antimicrobial peptides. Firstly, we train a random forest model to differentiate between antimicrobial and non-antimicrobial peptides. The model achieved an accuracy of 88.9%, an F1 score of 87.6%, and an AUC of 88.8%, and was used as a fitness functions the genetic algorithm tries to maximize, which guides it towards novel compounds. Finally, we show that, as the algorithm progresses, the percentage of peptides with high antimicrobial predisposition in population rises from 0% to 100% in 34 iterations. Newly discovered peptides, such as ITIVPKKCKLLL, are then additionally checked by CAMPR3 artificial intelligence antimicrobial peptides prediction tool. Since peptide design is NP-hard, this presents a leap in our endeavours to facilitate in silico discovery of novel valuable compounds.
Izvorni jezik
Engleski
Znanstvena područja
Kemijsko inženjerstvo, Računarstvo, Farmacija, Biotehnologija, Biotehnologija u biomedicini (prirodno područje, biomedicina i zdravstvo, biotehničko područje)
POVEZANOST RADA
Projekti:
--UIP-2019-04-7999 - Dizajn katalitički aktivnih peptida i peptidnih nanostruktura (UIP-2019-04) (DeShPet) (Kalafatović, Daniela) ( CroRIS)