Pregled bibliografske jedinice broj: 1148012
Action Recognition in Handball Scenes
Action Recognition in Handball Scenes // Intelligent Computing. Lecture Notes in Networks and Systems / Kohei Arai (ur.).
Cham: Springer, 2021. str. 645-656 doi:10.1007/978-3-030-80119-9_41 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1148012 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Action Recognition in Handball Scenes
Autori
Host, Kristina ; Ivasic-Kos, Marina ; Pobar, Miran
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Intelligent Computing. Lecture Notes in Networks and Systems
/ Kohei Arai - Cham : Springer, 2021, 645-656
ISBN
978-3-030-80119-2
Skup
2021 Computing Conference
Mjesto i datum
London, Ujedinjeno Kraljevstvo, 15.07.2021. - 16.07.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Human action recognition, Action recognition in sport, Handball, Inception v3, CNN, MLP, LSTM
Sažetak
Action recognition in sports, especially in handball, is a challenging task due to a lot of players being on the sports field performing different actions simultaneously. Training or match recordings and analysis can help an athlete, or his coach gain a better overview of statistics related to player activity, but more importantly, action recognition and analysis of action performance can indicate key elements of technique that need to be improved. In this paper the focus is on recognition of 11 actions that might occur during a handball match or practice. We compare the performance of a baseline CNN-model that classifies each frame into an action class with LSTM and MLP based models built on top of the baseline model, that additionally use the temporal information in the input video. The models were trained and tested with different lengths of input sequences ranging from 20 to 80, since the action duration varies roughly in the same range. Also, different strategies for reduction of the number of frames were tested. We found that increasing the number of frames in the input sequence improved the results for the MLP based model, while it didn't affect the performance of the LSTM model in the same way.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-8345 - Automatsko raspoznavanje akcija i aktivnosti u multimedijalnom sadržaju iz domene sporta (RAASS) (Ivašić Kos, Marina, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus