Pregled bibliografske jedinice broj: 1147538
Prediction of Traffic Accidents Severity Based on Machine Learning and Multiclass Classification Model
Prediction of Traffic Accidents Severity Based on Machine Learning and Multiclass Classification Model // Proceedings of the 44th International Convention for Information and Communication Technology, Electronics and Microelectronics - MIPRO 2021 / Skala, Karolj (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2021. str. 1700-1705 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1147538 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Prediction of Traffic Accidents Severity Based on
Machine Learning and Multiclass Classification
Model
Autori
Iveta, Mateja ; Radovan, Aleksander ; Mihaljević, Branko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 44th International Convention for Information and Communication Technology, Electronics and Microelectronics - MIPRO 2021
/ Skala, Karolj - Opatija : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2021, 1700-1705
Skup
44th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2021)
Mjesto i datum
Opatija, Hrvatska, 27.09.2021. - 01.10.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
multiclass classification ; deep learning ; road accidents
Sažetak
Road traffic accidents are a common and seemingly inevitable problem. While its occurrences rely on many unpredictable factors, this paper shows how to utilize machine learning to predict the severity of the accident. The dataset used was related to road accidents in the United Kingdom over a period of a few years. Some of the parameters observed were the weather conditions, sun position, speed limit, and time of the day. To predict the severity of the accident given the circumstances and road conditions, a multiclass classification model is used. Different datasets were combined to cover different situations and scenarios that happen in traffic and taking the severity of accidents in prediction. The dataset values were normalized before the training process and the training set and validated on the validation dataset. The prediction results show the correlation between used weather conditions, daylight time, and traffic accident severity.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Veleučilište Velika Gorica,
Visoko učilište Algebra, Zagreb ,
RIT Croatia, Dubrovnik