Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1147538

Prediction of Traffic Accidents Severity Based on Machine Learning and Multiclass Classification Model


Iveta, Mateja; Radovan, Aleksander; Mihaljević, Branko
Prediction of Traffic Accidents Severity Based on Machine Learning and Multiclass Classification Model // Proceedings of the 44th International Convention for Information and Communication Technology, Electronics and Microelectronics - MIPRO 2021 / Skala, Karolj (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2021. str. 1700-1705 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1147538 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Prediction of Traffic Accidents Severity Based on Machine Learning and Multiclass Classification Model

Autori
Iveta, Mateja ; Radovan, Aleksander ; Mihaljević, Branko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 44th International Convention for Information and Communication Technology, Electronics and Microelectronics - MIPRO 2021 / Skala, Karolj - Opatija : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2021, 1700-1705

Skup
44th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2021)

Mjesto i datum
Opatija, Hrvatska, 27.09.2021. - 01.10.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
multiclass classification ; deep learning ; road accidents

Sažetak
Road traffic accidents are a common and seemingly inevitable problem. While its occurrences rely on many unpredictable factors, this paper shows how to utilize machine learning to predict the severity of the accident. The dataset used was related to road accidents in the United Kingdom over a period of a few years. Some of the parameters observed were the weather conditions, sun position, speed limit, and time of the day. To predict the severity of the accident given the circumstances and road conditions, a multiclass classification model is used. Different datasets were combined to cover different situations and scenarios that happen in traffic and taking the severity of accidents in prediction. The dataset values were normalized before the training process and the training set and validated on the validation dataset. The prediction results show the correlation between used weather conditions, daylight time, and traffic accident severity.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Veleučilište Velika Gorica,
Visoko učilište Algebra, Zagreb ,
RIT Croatia, Dubrovnik

Profili:

Avatar Url Mateja Iveta (autor)

Avatar Url Branko Mihaljević (autor)

Avatar Url Aleksander Radovan (autor)


Citiraj ovu publikaciju:

Iveta, Mateja; Radovan, Aleksander; Mihaljević, Branko
Prediction of Traffic Accidents Severity Based on Machine Learning and Multiclass Classification Model // Proceedings of the 44th International Convention for Information and Communication Technology, Electronics and Microelectronics - MIPRO 2021 / Skala, Karolj (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2021. str. 1700-1705 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Iveta, M., Radovan, A. & Mihaljević, B. (2021) Prediction of Traffic Accidents Severity Based on Machine Learning and Multiclass Classification Model. U: Skala, K. (ur.)Proceedings of the 44th International Convention for Information and Communication Technology, Electronics and Microelectronics - MIPRO 2021.
@article{article, author = {Iveta, Mateja and Radovan, Aleksander and Mihaljevi\'{c}, Branko}, editor = {Skala, K.}, year = {2021}, pages = {1700-1705}, keywords = {multiclass classification, deep learning, road accidents}, title = {Prediction of Traffic Accidents Severity Based on Machine Learning and Multiclass Classification Model}, keyword = {multiclass classification, deep learning, road accidents}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {Iveta, Mateja and Radovan, Aleksander and Mihaljevi\'{c}, Branko}, editor = {Skala, K.}, year = {2021}, pages = {1700-1705}, keywords = {multiclass classification, deep learning, road accidents}, title = {Prediction of Traffic Accidents Severity Based on Machine Learning and Multiclass Classification Model}, keyword = {multiclass classification, deep learning, road accidents}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font