Pregled bibliografske jedinice broj: 1147464
Machine learning based prediction of Croatian 2017. local elections
Machine learning based prediction of Croatian 2017. local elections // MIPRO 2021, 44th International Convention Proceedings / Skala, Karolj (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2021. str. 1577-1581 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1147464 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Machine learning based prediction of Croatian 2017.
local elections
Autori
Kišić, Alen ; Kliček, Božidar
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
MIPRO 2021, 44th International Convention Proceedings
/ Skala, Karolj - Opatija : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2021, 1577-1581
Skup
44th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2021)
Mjesto i datum
Opatija, Hrvatska, 27.09.2021. - 01.10.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
machine learning ; predictive model ; social network data ; political elections
Sažetak
Internet development enabled intensive applications of new ways of communication. In today’s digital age, social media became fundamental mean of communication. Political parties are increasingly using social media for the purpose of advertising and voters` mobilization. An extensive literature review has identified multiple benefits of social media usage, such as gaining publicity, spreading messages and mobilizing voters, but also the need to monitor the content that is published, and moreover to analyze the impact of that content on potential voters. This paper examines the influence of political candidates ; activities on social media on elections outcome. By means of decision tree methodology, predictive model of election outcome is developed based on dataset consisting of candidates` characteristics, but also data of the candidates` activity on the social network Facebook. The predictive model is developed on dataset consisting of candidates in the local elections at large Croatian cities held in Croatia in 2017. The research identified the most important factors of political communication on the social network Facebook for election outcome and provides guidelines for the effective use of Facebook in political campaigns.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet organizacije i informatike, Varaždin