Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1146492

Fault Detection in DC Microgrids using Recurrent Neural Networks


Grcic, Ivan; Pandzic, Hrvoje
Fault Detection in DC Microgrids using Recurrent Neural Networks // 4th International Conference on Smart Energy Systems and Technologies (SEST 2021)
Vaasa: Institute of Electrical and Electronics Engineers (IEEE), 2021. str. 1-6 doi:10.1109/sest50973.2021.9543249 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1146492 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Fault Detection in DC Microgrids using Recurrent Neural Networks

Autori
Grcic, Ivan ; Pandzic, Hrvoje

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

ISBN
978-1-7281-7660-4

Skup
4th International Conference on Smart Energy Systems and Technologies (SEST 2021)

Mjesto i datum
Vaasa, Finska, 06.09.2021. - 08.09.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
fault detection, microgrid protection, deep learning, recurrent neural networks

Sažetak
Reliable and accurate fault detection plays a crucial role in the microgrid operation by enabling an increased operational flexibility. Successful classification of events in complex microgrid systems requires advanced models of sufficient speed and accuracy. Deep neural networks meet these requirements, as they have demonstrated their capabilities in a wide range of applications. In particular, Recurrent Neural Networks (RNNs) are used for sequence learning, making them suitable for online fault detection. In this work, the RNN is applied to the time- domain signal to detect faults in a photovoltaic- based DC microgrid. The classifier successfully discriminates all events and proves its performance using various metrics.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Hrvoje Pandžić (autor)

Avatar Url Ivan Grcić (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Grcic, Ivan; Pandzic, Hrvoje
Fault Detection in DC Microgrids using Recurrent Neural Networks // 4th International Conference on Smart Energy Systems and Technologies (SEST 2021)
Vaasa: Institute of Electrical and Electronics Engineers (IEEE), 2021. str. 1-6 doi:10.1109/sest50973.2021.9543249 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Grcic, I. & Pandzic, H. (2021) Fault Detection in DC Microgrids using Recurrent Neural Networks. U: 4th International Conference on Smart Energy Systems and Technologies (SEST 2021) doi:10.1109/sest50973.2021.9543249.
@article{article, author = {Grcic, Ivan and Pandzic, Hrvoje}, year = {2021}, pages = {1-6}, DOI = {10.1109/sest50973.2021.9543249}, keywords = {fault detection, microgrid protection, deep learning, recurrent neural networks}, doi = {10.1109/sest50973.2021.9543249}, isbn = {978-1-7281-7660-4}, title = {Fault Detection in DC Microgrids using Recurrent Neural Networks}, keyword = {fault detection, microgrid protection, deep learning, recurrent neural networks}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Vaasa, Finska} }
@article{article, author = {Grcic, Ivan and Pandzic, Hrvoje}, year = {2021}, pages = {1-6}, DOI = {10.1109/sest50973.2021.9543249}, keywords = {fault detection, microgrid protection, deep learning, recurrent neural networks}, doi = {10.1109/sest50973.2021.9543249}, isbn = {978-1-7281-7660-4}, title = {Fault Detection in DC Microgrids using Recurrent Neural Networks}, keyword = {fault detection, microgrid protection, deep learning, recurrent neural networks}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Vaasa, Finska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font