Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1145887

Dew Computing in Industrial Automation: Applying Machine Learning for Process Control


Šverko, Mladen; Tanković, Nikola; Etinger, Darko
Dew Computing in Industrial Automation: Applying Machine Learning for Process Control // 2021 IEEE 45th Annual Computers, Software, and Applications Conference / Chan, W. K. ; Claycomb, Bill ; Takakura, Hiroki ; Yang, Ji-Jiang ; Teranishi, Yuuichi ; Towey, Dave ; Segura, Sergio ; Shahriar, Hossain ; Reisman, Sorel ; Ahamed, Sheikh Iqbal (ur.).
Los Alamitos (CA): CPS, IEEE Computer Society, 2021. str. 1789-1794 doi:10.1109/COMPSAC51774.2021.00268 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1145887 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Dew Computing in Industrial Automation: Applying Machine Learning for Process Control

Autori
Šverko, Mladen ; Tanković, Nikola ; Etinger, Darko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
2021 IEEE 45th Annual Computers, Software, and Applications Conference / Chan, W. K. ; Claycomb, Bill ; Takakura, Hiroki ; Yang, Ji-Jiang ; Teranishi, Yuuichi ; Towey, Dave ; Segura, Sergio ; Shahriar, Hossain ; Reisman, Sorel ; Ahamed, Sheikh Iqbal - Los Alamitos (CA) : CPS, IEEE Computer Society, 2021, 1789-1794

ISBN
978-1-6654-2463-9

Skup
45th Annual Computers, Software, and Applications Conference (COMPSAC 2021)

Mjesto i datum
Los Alamitos (CA), Sjedinjene Američke Države, 12.07.2021. - 16.07.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
cloud ; dew computing ; industry ; scada ; ics ; data analysis ; machine learning

Sažetak
Network infrastructure in the era of Big data, Industry 4.0, IoT, and AI, pushed the boundaries of data avail- ability, scalability, reliability, high bandwidth, and low latency. This resulted in a new paradigm of cloud computing providing centralized data storage, efficient resource management, and software products marketed in an as-a- service manner. However, there are still many QoS-sensitive use- cases where data and service availability, network latency, and throughput needs to be further addressed. Partial solutions to these problems came in Fog and Edge computing, providing computation and data closer to end-user network devices. But these concepts still do not fully address the issues of offline data availability and network latency. A potential answer to these questions could be the concept of dew computing - an additional layer in the existing client-server architecture, operating on end devices to achieve the highest possible level of data synchronization between data in the cloud and local devices, which in the standard Cloud- Fog-Edge architecture relies strictly on connectivity. This paper addresses the implementation of dew computing in the field of industrial automation and data analysis performed in the cloud, with local execution of the resulting model algorithm by reducing network latency and providing offline data availability, providing the necessary data synchronization between the cloud and local databases.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Sveučilište Jurja Dobrile u Puli

Profili:

Avatar Url Nikola Tanković (autor)

Avatar Url Darko Etinger (autor)

Avatar Url Mladen Šverko (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Šverko, Mladen; Tanković, Nikola; Etinger, Darko
Dew Computing in Industrial Automation: Applying Machine Learning for Process Control // 2021 IEEE 45th Annual Computers, Software, and Applications Conference / Chan, W. K. ; Claycomb, Bill ; Takakura, Hiroki ; Yang, Ji-Jiang ; Teranishi, Yuuichi ; Towey, Dave ; Segura, Sergio ; Shahriar, Hossain ; Reisman, Sorel ; Ahamed, Sheikh Iqbal (ur.).
Los Alamitos (CA): CPS, IEEE Computer Society, 2021. str. 1789-1794 doi:10.1109/COMPSAC51774.2021.00268 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Šverko, M., Tanković, N. & Etinger, D. (2021) Dew Computing in Industrial Automation: Applying Machine Learning for Process Control. U: Chan, W., Claycomb, B., Takakura, H., Yang, J., Teranishi, Y., Towey, D., Segura, S., Shahriar, H., Reisman, S. & Ahamed, S. (ur.)2021 IEEE 45th Annual Computers, Software, and Applications Conference doi:10.1109/COMPSAC51774.2021.00268.
@article{article, author = {\v{S}verko, Mladen and Tankovi\'{c}, Nikola and Etinger, Darko}, year = {2021}, pages = {1789-1794}, DOI = {10.1109/COMPSAC51774.2021.00268}, keywords = {cloud, dew computing, industry, scada, ics, data analysis, machine learning}, doi = {10.1109/COMPSAC51774.2021.00268}, isbn = {978-1-6654-2463-9}, title = {Dew Computing in Industrial Automation: Applying Machine Learning for Process Control}, keyword = {cloud, dew computing, industry, scada, ics, data analysis, machine learning}, publisher = {CPS, IEEE Computer Society}, publisherplace = {Los Alamitos (CA), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }
@article{article, author = {\v{S}verko, Mladen and Tankovi\'{c}, Nikola and Etinger, Darko}, year = {2021}, pages = {1789-1794}, DOI = {10.1109/COMPSAC51774.2021.00268}, keywords = {cloud, dew computing, industry, scada, ics, data analysis, machine learning}, doi = {10.1109/COMPSAC51774.2021.00268}, isbn = {978-1-6654-2463-9}, title = {Dew Computing in Industrial Automation: Applying Machine Learning for Process Control}, keyword = {cloud, dew computing, industry, scada, ics, data analysis, machine learning}, publisher = {CPS, IEEE Computer Society}, publisherplace = {Los Alamitos (CA), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font