Pregled bibliografske jedinice broj: 1145887
Dew Computing in Industrial Automation: Applying Machine Learning for Process Control
Dew Computing in Industrial Automation: Applying Machine Learning for Process Control // 2021 IEEE 45th Annual Computers, Software, and Applications Conference / Chan, W. K. ; Claycomb, Bill ; Takakura, Hiroki ; Yang, Ji-Jiang ; Teranishi, Yuuichi ; Towey, Dave ; Segura, Sergio ; Shahriar, Hossain ; Reisman, Sorel ; Ahamed, Sheikh Iqbal (ur.).
Los Alamitos (CA): CPS, IEEE Computer Society, 2021. str. 1789-1794 doi:10.1109/COMPSAC51774.2021.00268 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1145887 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Dew Computing in Industrial Automation: Applying
Machine Learning
for Process Control
Autori
Šverko, Mladen ; Tanković, Nikola ; Etinger, Darko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2021 IEEE 45th Annual Computers, Software, and Applications Conference
/ Chan, W. K. ; Claycomb, Bill ; Takakura, Hiroki ; Yang, Ji-Jiang ; Teranishi, Yuuichi ; Towey, Dave ; Segura, Sergio ; Shahriar, Hossain ; Reisman, Sorel ; Ahamed, Sheikh Iqbal - Los Alamitos (CA) : CPS, IEEE Computer Society, 2021, 1789-1794
ISBN
978-1-6654-2463-9
Skup
45th Annual Computers, Software, and Applications Conference (COMPSAC 2021)
Mjesto i datum
Los Alamitos (CA), Sjedinjene Američke Države, 12.07.2021. - 16.07.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
cloud ; dew computing ; industry ; scada ; ics ; data analysis ; machine learning
Sažetak
Network infrastructure in the era of Big data, Industry 4.0, IoT, and AI, pushed the boundaries of data avail- ability, scalability, reliability, high bandwidth, and low latency. This resulted in a new paradigm of cloud computing providing centralized data storage, efficient resource management, and software products marketed in an as-a- service manner. However, there are still many QoS-sensitive use- cases where data and service availability, network latency, and throughput needs to be further addressed. Partial solutions to these problems came in Fog and Edge computing, providing computation and data closer to end-user network devices. But these concepts still do not fully address the issues of offline data availability and network latency. A potential answer to these questions could be the concept of dew computing - an additional layer in the existing client-server architecture, operating on end devices to achieve the highest possible level of data synchronization between data in the cloud and local devices, which in the standard Cloud- Fog-Edge architecture relies strictly on connectivity. This paper addresses the implementation of dew computing in the field of industrial automation and data analysis performed in the cloud, with local execution of the resulting model algorithm by reducing network latency and providing offline data availability, providing the necessary data synchronization between the cloud and local databases.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Sveučilište Jurja Dobrile u Puli