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Abstract: Additive manufacturing is the modern technology that uses a 
computer-aided design product data to create its real physical replica. In the 
industry already exist a vast number of different additive manufacturing 
processes that use various types of materials, from polymers to metals, to 
create new products and prototypes. Fused deposition modeling (FDM) is 
one of the well-known additive manufacturing processes. It is able to create 
products that can be treated and used further in the manufacturing process. 
These products have very acceptable mechanical properties. These 
properties mostly depend and vary according to process parameters values 
and can be optimized by setting process parameters on appropriate levels. 
In this paper, a fuzzy logic modeling approach was used to analyze the 
influence of variable process parameters: top and bottom surface 
number, fill spacing, and layer resolution on ultimate tensile strength and 
manufacturing cost. Experiments were conducted on the PLA (Polylactic 
Acid) biodegradable material but it can be also tested on some other 
materials such as ABS, PC, PSU, PEEK and etc. Developed models were 
used to describe the process and determine process parameters values that 
lead to maximal tensile strength and minimal cost. Findings in this paper 
can be significant for users involved in this type of process to obtain a 
higher quality product and desirable savings.

Introduction 
Fused deposition modeling (FDM) is one rapidly 
growing technology of additive manufacturing (AM). It 
was developed almost 30 years ago. At that time, it was 
mainly focused on building conceptual models, but today 
it is present in the field of electronics, industry 
(machines, automobile, and space) but also in medicine, 
science, architecture, and military. The basic principle of 
FDM is that the melted polymer in a wire form passes 
through the nozzle. The polymer cures at room 
temperature, and thus, the heat of the melted material 
should be maintained a little above the curing 
temperature. The head of the extruder moves in the x-y 
plane, and after the production of the first layer, the 
platform moves down on the z-axis, thus extruding the 
new layer. The process of applying a new layer repeats,
and a model is generated [1-3]. Depending on the 
geometry of the model, the extruder can build a 
supporting material for the model, which can be easily 
removed after printing. The surface of the model tends to 
be rough, and the model can be additionally processed 
after the printing, using techniques such as milling, 
grinding, and turning. Depending on the type of the used 
polymer, it can be treated with various chemicals to gain
a smooth finish. For FDM, various polymers can be used: 
acrylonitrile butadiene styrene (ABS), polylactic acid 

(PLA), polycarbonates (PC), polypropylene (PP), 
polyethylene high density (PE-HD) and polyethylene 
low density (PE-LD) [3]. Investment is relatively small,
as well as maintenance cost, material waste, and energy 
consumption [3]. Furthermore, an application is 
relatively simple, the material is stable and can be 
processed afterward. Several prototypes can be 
manufactured at one extrusion, and finally, low-cost 
products can be obtained, at least for low-cost 3D 
printers. On the other hand, the lack of this technology 
for building prototypes is that the created parts need to be 
finally processed after printing, and models usually 
require printing support. Furthermore, the process is 
sensitive to temperature changes. Dimensional accuracy 
of the model can be low and sharp edges cannot be 
produced due to the circular nozzle that shape the final 
product cross section [1]. Usually, material density is 
lower in the direction vertical to the printing direction, 
and the mechanical properties of the parts depend on the 
position of the product on the working surface (platform), 
especially in the z-axis direction [4, 5]. 
Considering the significant impact in most of the science 
and technology fields, the numerous studies on the 
efficiency of parameters of the FDM process is not 
surprising [6-19]. The main focus of these studies was 
based on the research on the impact of various parameters 
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that can affect the success of the process such as layer 
thickness, raster angle, and width, the orientation of the 
part build, air gap, strength (flexural and impact) [6-9]. 
Furthermore, numerous researches were conducted to 
investigate the influence of the FDM process parameters 
on the obtained samples properties: surface roughness 
[10], dimensional accuracy [11], material behavior 
(elasticity) [12], build time [13] and mechanical 
properties [14]. In most of the previous researches,
efforts have been made to explain the relationship 
between the input process parameters obtained on the 
obtained samples properties using mathematical 
modeling methods [9-16, 18-19]. Several of research 
works were based on various optimization and modeling 
techniques such as response surface methodology 
(RSM), Taguchi method, full factorial, gray relational, 
fractional factorial, artificial neural network (ANN), 
fuzzy logic and genetic algorithms (GA) [17]. 
Nancharaiah et al. [10] studied the influences of process 
parameters such as layer thickness, road width, raster 
angle, and air gap on the surface finish of FDM processed 
ABS part through the Taguchi method and variance 
analysis (ANOVA) technique. The main conclusion was 
that surface roughness could be improved by using a 
lower value of layer thickness and air gap [10]. Peko et 
al. [16] utilized the design of experiments (DOE) 
approach in order to create mathematical models that can 
describe the influence of process parameters on maximal 
ultimate tensile strength and cost of the obtained samples. 
DOE was prepared using D-optimal response surface 
design. Optimization results showed that the samples 
with the best combination of tensile strength and cost 
were samples produced with 11 surface layers, fill 
spacing 15 mm,
to these results, it is possible to create samples that have 
77.8 % of maximal UTS obtained in this research, but 
these samples also cost 45.9 % less than those with the 
maximal value of UTS [16]. Onwubolu et al. [18] 
analyzed the influence of layer thickness, part 
orientation, raster angle, raster width, and air gap on the 
tensile strength of test specimens. Mathematical models 
relating the response to the process parameters were 
developed using the group method of data handling 
(GMDH). Optimal process parameters that lead to 
maximized tensile strength were defined through the 
application of differential evolution (DE) algorithm. 
Sood et al. [19] made an extensive study to understand 
the effect of five FDM parameters such as layer 
thickness, part build orientation, raster angle, raster 
width, and air gap on the compressive stress of test 
specimens. They also developed statistically validated 
predictive equations using an artificial neural network 
approach and regression analysis and found optimal 
parameter settings through quantum-behaved particle 
swarm optimization (QPSO). 
The main aim of this paper is to create mathematical 
models that should serve for description and prediction 

of the influence of additive manufacturing process 
parameters on the mechanical properties and cost of the 
obtained samples. As mentioned above, most of the 
previous researches deal with visual, mechanical, and 
physical properties of the obtained FDM samples, while 
in this research, economic perspective was also taken into 
consideration. The input process parameter was top and
bottom surface layers number, fill spacing, and layer 
resolution. According to the comprehensive review paper 
published by Omar et al. [17], many studies have 
investigated the effects of FDM process parameters on 
ABS built part. However, in the case of other FDM 
materials, very little work has been done both in terms of 
material characterization and FDM process optimization. 
Therefore, considerable work remains to be done in 

involving other FDM polymers such as PC, PPSF, PC-
ABS, PC-ISO, elastomer, and nylon-12 [17]. For this 
reason, for the analysis in this paper PLA material is 
conducted. PLA is a biodegradable polymer, in contrast 
to ABS, which is not biodegradable but can be recycled. 
PLA has low printing temperature, and it can print 
sharper corners in comparison to ABS. Also, in contrast 
to ABS, it is significant in printing models for which the 
form is more important than its function [20-22]. 
Mathematical modeling in this paper will be conducted 
using the artificial intelligence method of fuzzy logic 
(FL). Fuzzy logic modeling provides a way to better 
understand the process behavior by allowing the 
functional mapping between input and output 
observations [23, 24]. Afterward, the quality of the 
obtained mathematical model will be estimated using the 
mean absolute percentage error (MAPE) and the 
coefficient of determination (R2) between experimental 
and predicted response values. The created model will be 
used to determinate optimal area of input process 
parameters values that lead to maximal ultimate tensile 
strength and minimal cost of manufacturing. Obtained 
models should serve as a valuable tool in additive 
manufacturing investigation.

Experimental procedure
In order to develop mathematical models, design of 
experiment method (DOE) was utilized. These 
mathematical models will be able to predict output 
process responses and show the impact of variable input 
process parameters on them. In this paper, DOE was 
prepared using Taguchi L18 experimental plan. The 
impact of fill spacing, layer resolution and the number of
top and bottom surface layers on built samples maximal 
tensile strength and manufacturing cost are investigated. 
Variable process parameters represent additive 
manufacturing machine settings that can be adjusted by 
operator. Fixed input parameters are building material: 
PLA, print mode: custom, print strength: strong, print 
pattern: honeycomb, outer walls: 1. Variable process 
parameters values and obtained ultimate tensile strength 
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values as well as cost for all experimental samples are 
shown in Table 1. Cost was calculated as:

(1)

Table 1. Design of experiment and results 

Experimental work was conducted on a CubePro (3D 
Systems) additive manufacturing machine. Experimental 
samples were generated according to HRN EN ISO 
527:2012 standard (Figure 1b). Building material was 
applied in layers in z-axis while building platform lies in 
an x-y plane. Furthermore, ultimate tensile strength 
evaluation was performed on universal testing machine 

finished a few random stress-strain diagrams for different 
experimental samples were generated (Figure 1c).

Fuzzy logic modeling
Fuzzy logic modeling is one of the most important 
modeling approaches in the field of artificial intelligence. 
It is very useful for modeling complex processes where 
the limited understanding of the physical laws that 
describe the underlying process does not allow 
development of accurate mathematical models. For 
complex processes where there are a few numerical data 
and where only ambiguous or imprecise information is 
available, fuzzy logic modeling provides a way to better 

understand the process behavior by allowing the 
functional mapping between input and output 
observations [23, 24]. The fuzzy system consists of four 
components (Figure 2): the fuzzification module, the 
fuzzy inference module, the defuzzification module, and 
the knowledge base. Fuzzification module converts all 
input variables into fuzzy (linguistic) variables using 
membership functions. A membership function is a curve 
that defines how each point in the input and output space 
is mapped to a membership value (or degree of 
membership) between 0 and 1. There are many available 
membership functions like triangular, trapezoidal, 
Gaussian etc. [24, 25]. The fuzzy inference module uses 
the knowledge base containing the fuzzy IF-THEN rules 
and the membership functions to obtain the fuzzy 
(linguistic) output values for the corresponding inputs. 
Finally, the defuzzification module converts the 
aggregated fuzzy output into a non-fuzzy value [24].

No. of 
experiment

Top and bottom surface 
layers number

Fill spacing 
(mm)

Layer resolution Ultimate tensile strength, 
UTS (MPa)

Cost (EUR)

1. 3 2 70 25.150 1.77

2. 3 2 200 14.758 1.49

3. 3 2 300 15.258 1.59

4. 3 8.5 70 17.399 1.08

5. 3 8.5 200 15.818 1.16

6. 3 8.5 300 16.860 1.25

7. 3 15 70 17.130 0.94

8. 3 15 200 15.835 1.11

9. 3 15 300 14.372 1.09

10. 15 2 70 46.561 2.21

11. 15 2 200 49.046 1.84

12. 15 2 300 38.911 1.53

13. 15 8.5 70 43.994 1.71

14. 15 8.5 200 48.693 1.78

15. 15 8.5 300 28.092 1.53

16. 15 15 70 42.134 1.64

17. 15 15 200 48.861 1.77

18. 15 15 300 38.662 1.53
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                                              a)    b) 
 

 

c) 

Figure 1.  a) Universal tensile testin ew experimental samples, c) Stress-strain diagrams for the 
few samples 

 

 

Figure 2.  Structure of the fuzzy logic system with three input process parameters and two output responses 
 
In this paper, for the purpose of FDM process analysis, 
Mamdani fuzzy inference system was used. Process 
parameters: top and bottom surface layers number (SLN) 
fill spacing (FS), layer resolution (LR) were considered 
as inputs, while ultimate tensile strength (UTS) and cost 
were considered as outputs. For SLN input two 
membership functions were used: Low and High, while 

for FS and LR inputs three membership functions were 
used: Low, Medium and High.  
On the other side, for both outputs, five membership 
functions were used: Low (L), Low-Medium (LM), 
Medium (M), Medium-High (MH), High (H). Gaussian 
membership functions were employed to describe the 
fuzzy sets of inputs and outputs. Membership functions 
and their ranges are shown in Figure 3. 
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After selection of membership functions, based on 
conducted experiments, a set of 18 fuzzy IF-THEN rules 
with three inputs (SLN, FS, LR) and two outputs (UTS, 
Cost) was constructed. Each of these rules plays an 
important role in generating the fuzzy logic model and 
the accuracy of the numerical output [24, 26].  These 
rules are shown in Table 2. Fuzzy inference process was 
defined by the following: and method: min, or method: 
max, implication: min, aggregation: max and 
defuzzification method: centroid.  

Centroid method is a widely accepted method of 
deffuzification where the deffuzified output z* is 
obtained by: 

 

where µA(z) is the aggregated membership function and 
z is the output variable (the center value of the regions). 
 

Table 2.  Set of fuzzy rules 

  

1. If (SLN is Low) and (FS is Low) and (LR is 
Low) 
then (UTS is M)(Cost is MH) 

2. If (SLN is Low) and (FS is Low) and (LR is 
Medium) 
then (UTS is L)(Cost is M) 

3. If (SLN is Low) and (FS is Low) and (LR is 
High) 
then (UTS is L)(Cost is M) 

4. If (SLN is Low) and (FS is Medium) and (LR is 
Low) 
then (UTS is LM)(Cost is L) 

5. If (SLN is Low) and (FS is Medium) and (LR is 
Medium) 
then (UTS is L)(Cost is L) 

6. If (SLN is Low) and (FS is Medium) and (LR is 
High) 
then (UTS is LM)(Cost is LM) 

7. If (SLN is Low) and (FS is High) and (LR is 
Low) 
then (UTS is LM)(Cost is L) 

8. If (SLN is Low) and (FS is High) and (LR is 
Medium) 
then (UTS is L)(Cost is L) 

9. If (SLN is Low) and (FS is High) and (LR is 
High) 
then (UTS is L)(Cost is L) 

10. If (SLN is High) and (FS is Low) and (LR is 
Low) 
then (UTS is H)(Cost is H) 

11. If (SLN is High) and (FS is Low) and (LR is 
Medium) 
then (UTS is H)(Cost is MH) 

12. If (SLN is High) and (FS is Low) and (LR is 
High) 
then (UTS is MH)(Cost is M) 

13. If (SLN is High) and (FS is Medium) and (LR is 
Low) 
then (UTS is MH)(Cost is MH) 

14. If (SLN is High) and (FS is Medium) and (LR is 
Medium) 
then (UTS is H)(Cost is MH) 

15. If (SLN is High) and (FS is Medium) and (LR is 
High) 
then (UTS is M)(Cost is M) 

16. If (SLN is High) and (FS is High) and (LR is 
Low) 
then (UTS is MH)(Cost is M) 

17. If (SLN is High) and (FS is High) and (LR is 
Medium) 
then (UTS is H)(Cost is MH) 

18. If (SLN is High) and (FS is High) and (LR is 
High) 
then (UTS is MH)(Cost is M) 
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                                           a)                                                                                                     b) 

   
                                           c)                                                                                                    d) 
 

 
e) 

 
Figure 3.  Membership functions for a) top and bottom surface layers number, b) fill spacing, 

c) layer resolution, d) ultimate tensile strength, e) cost 
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Results and discussion
In order to assess the prediction accuracy of the 
developed fuzzy logic model, the prediction and 
experimental data were compared. These comparison 

results with calculated mean absolute percentage errors 
(MAPE) and coefficients of determination (R2) for both 
outputs are shown in Figures 4 and 5.

                                                a) b)
Figure 4. a) mean absolute percentage error between experimental and predicted data for UTS, b) coefficient of determination 

between experimental and predicted data for UTS

                                               a)                                                                                                       b)
Figure 5. a) mean absolute percentage error between experimental and predicted data for cost, b) coefficient of determination 

between experimental and predicted data for cost

From the results in Figures 4 and 5, it is clear that 
developed fuzzy logic model has a good prediction 
performance. Once developed and validated fuzzy logic 
model can be used to analyze the effects of the fused 
deposition modeling process parameters on the ultimate 
tensile strength (UTS) and cost.
In order to that, three 3D surface plots for each of outputs 
were generated using a developed fuzzy logic model. 
These response surfaces are shown in Figures 6 and 7.
From the Figures 6 and 7, it can be observed that ultimate 
tensile strength and cost are quite sensitive to all fused 
deposition modeling process parameters. It is clear, from 
the Figure 6a) that higher top and bottom surface layers 
number at the layer resolution of 200 µm result with 

higher ultimate tensile strength. The fill spacing 

tensile strength values change. At the same time, from the 
Figure 7a) it is obvious that, at the layer resolution of 200 

higher manufacturing cost values. In the area of the low 
top and bottom surface layers number, higher fill spacing 
values result in lower costs while in the area of the high 
top and bottom surface layers number fill spacing 

costs.
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                                          a)                                                                                                             b)

c)
Figure 6. Effects of FDM process parameters on the UTS a) LR = 200 µm, b) FS = 8.5 mm, c) SLN = 3

                                          a)                                                                                                              b)

                                                                         c)

Figure 7. Effects of FDM process parameters on the cost a) LR = 200 µm, b) FS = 8.5 mm, c) SLN = 3
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Figure 6b) shows that, at the fill spacing of 8.5 mm, layer 

strength in the area of the low top and bottom surface 
layers number, while at the high top and bottom surface 
layers number, lowering layer resolution result in the 
ultimate tensile strength increment. On the other side, 
Figure 7b) shows that, at the fill spacing of 8.5 mm, low 
top and bottom surface layers number and the layer 

n the low costs. From the 
Figure 6c) it can be observed that lowering of the layer 
resolution at the fill spacing of 2 mm and in the area of 
the low top and bottom surface layers number, results in 
the higher ultimate tensile strength values. On the other 

show significant influence on the ultimate tensile 
strength. Increasing of the fill spacing parameter at the 

ultimate tensile strength. On the other layer resolution 

tensile strength.  Figure 7c) shows that increasing of fill 

spacing results in lower costs at the all three layers
resolution levels and in the area of the low top and bottom 
surface layers number. At the fill spacing of 2 mm 
lowering of layer resolution parameter lead to a 
noticeable increment of costs while at the fill spacing of 

manufacturing costs. In the area of fill spacing parameter 
middle value, a costs increment is visible at the layer 

surfaces obtained from the fuzzy logic model can help to 
find an optimal result of ultimate tensile strength and 
costs and their process parameters values. Optimal 
solutions are compromising. They lead to maximal 
possible ultimate tensile strength values that will at the 
same time result with the acceptable manufacturing costs. 
Layer resolution parameter can be varied only on three 
levels and due to that, the optimal solutions will be 
defined for each of these levels. Optimization results are 
shown in Table 3.

Table 3. *Optimization results

LRopt. SLNopt. FSopt.(mm) UTSopt. (MPa) Costopt. (EUR)

70 15 15 40.515 1.557

200 15

2 45.912 1.788

8.5 45.248 1.788

15 45.912 1.788

300 15
2 40.331 1.568

15 40.331 1.568

Conclusion
In this paper, the influence of the fused deposition 
modeling process parameters: top and bottom surface 
layers number, fill spacing and layer resolution on the 
ultimate tensile strength and additive manufacturing cost 
was analyzed. The experimental work was carried out on 
the specimens generated from the PLA plastic material. 
Experimental results were used to establish a relationship 
between inputs and analyzed responses. Modeling was 
conducted using a fuzzy logic approach. The generated 
model was validated using statistical measures such as 
mean absolute percentage error and coefficient of 
determination between experimental and predicted 
responses values. After the prediction accuracy of the 
developed model was done, the effects of parameters and 
their interactions were explained using response surfaces 
obtained from the fuzzy logic model. From these figures, 
it was clear that tensile strength and costs are 
proportional what means that higher tensile strength 
leads to higher costs. Also, the developed model was 
effective for further analysis and optimization procedure. 
According to that, the process parameters values that lead 
to maximal tensile strength and acceptable 
manufacturing cost were found (Table 3). Obtained 
observations are useful for users involved in this kind of 

additive manufacturing process. Future research will 
focus on the examination, modeling, and optimization of 
other mechanical properties of FDM specimens built by 
ABS plastic material.
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