Pregled bibliografske jedinice broj: 1144769
Sparse time-frequency distribution reconstruction based on the 2D Rényi entropy shrinkage algorithm
Sparse time-frequency distribution reconstruction based on the 2D Rényi entropy shrinkage algorithm // Digital Signal Processing, 118 (2021), 103225, 10 doi:10.1016/j.dsp.2021.103225 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1144769 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Sparse time-frequency distribution reconstruction
based on the 2D Rényi entropy shrinkage algorithm
Autori
Jurdana, Vedran ; Volaric, Ivan ; Sucic, Victor
Izvornik
Digital Signal Processing (1051-2004) 118
(2021);
103225, 10
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Time-frequency distribution ; Short-term Rényi entropy ; Narrow-band Rényi entropy ; Compressive sensing ; Sparse signal reconstruction
Sažetak
Time-frequency distributions (TFD) provide a set of powerful tools for the non-stationary signal analysis. Although TFD overcomes signal representation limitations, the most commonly used TFDs generate unwanted artefacts, also called the cross-terms, which make the TFD application less feasible for noise-corrupted real-life signals. In this paper, we investigate the advantages of the TFD sparsity by using the compressive sensing based methods. We propose a sparse reconstruction algorithm which reconstructs a TFD from a small sub-set of samples taken from the signal ambiguity function. The proposed algorithm is based on the iterative shrinkage algorithm which performance and robustness have been improved by utilizing the short-term and narrow-band Rényi entropies. Furthermore, we have circumvented the limitations of global concentration measure by coupling it with the measure based on the local Rényi entropy. The introduced concentration measures have been used as objective functions in a multi- objective meta-heuristic optimization of the proposed algorithm parameters, resulting in high- resolution TFDs while avoiding disjunctions within signal components. The obtained results have been compared to the state-of-the-art sparse reconstruction algorithms, for both noisy synthetic and real-life signals.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Projekti:
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-67 - Rekonstrukcija vremensko-frekvencijske distribucije iz komprimirano uzorkovane domene neodređenosti analiziranog signala (Sučić, Viktor, NadSve ) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus