Pregled bibliografske jedinice broj: 1140929
Annotated retinal optical coherence tomography images (AROI) database for joint retinal layer and fluid segmentation
Annotated retinal optical coherence tomography images (AROI) database for joint retinal layer and fluid segmentation // Automatika : časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije, 62 (2021), 3; 375-385 doi:10.1080/00051144.2021.1973298 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1140929 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Annotated retinal optical coherence tomography
images (AROI) database for joint retinal layer and
fluid segmentation
Autori
Melinščak, Martina ; Radmilović, Marin ; Vatavuk, Zoran ; Lončarić, Sven
Izvornik
Automatika : časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije (0005-1144) 62
(2021), 3;
375-385
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
annotated retinal OCT images ; images database ; automatic image segmentation ; deep learning ; age-related macular degeneration
Sažetak
Optical coherence tomography (OCT) images of the retina provide a structural representation and give an insight into the pathological changes present in age-related macular degeneration (AMD). Due to the three-dimensionality and complexity of the images, manual analysis of pathological features is difficult, time-consuming, and prone to subjectivity. Computer analysis of 3D OCT images is necessary to enable automated quantitative measuring of the features, objectively and repeatedly. As supervised and semi-supervised learning-based automatic segmentation depends on the training data and quality of annotations, we have created a new database of annotated retinal OCT images – the AROI database. It consists of 1136 images with annotations for pathological changes (fluid accumulation and related findings) and basic structures (layers) in patients with AMD. Inter- and intra-observer errors have been calculated in order to enable the validation of developed algorithms in relation to human variability. Also, we have performed the automatic segmentation with standard U-net architecture and two state-of-the- art architectures for medical image segmentation to set a baseline for further algorithm development and to get insight into challenges for automatic segmentation. To facilitate and encourage further research in the field, we have made the AROI database openly available.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Stomatološki fakultet, Zagreb,
KBC "Sestre Milosrdnice",
Veleučilište u Karlovcu
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus