Pregled bibliografske jedinice broj: 1139035
Deep embedded clustering algorithm for clustering PACS repositories
Deep embedded clustering algorithm for clustering PACS repositories // 2021 IEEE 34th International Symposium on Computer- Based Medical Systems (CBMS)
Aveiro, Portugal; online, 2021. str. 401-406 doi:10.1109/CBMS52027.2021.00091 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1139035 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Deep embedded clustering algorithm for clustering
PACS repositories
Autori
Manojlović, Teo ; Milanič, Matija ; Štajduhar, Ivan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2021 IEEE 34th International Symposium on Computer- Based Medical Systems (CBMS)
/ - , 2021, 401-406
ISBN
978-166544121-6
Skup
34th IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS 2021)
Mjesto i datum
Aveiro, Portugal; online, 07.06.2021. - 09.06.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
convolutional autoencoder ; convolutional deep embedded clustering ; unsupervised learning ; medical image database ; PACS
Sažetak
Creating large datasets of medical radiology images from several sources can be challenging because of the differences in the acquisition and storage standards. One possible way of controlling and/or assessing the image selection process is through medical image clustering. This, however, requires an efficient method for learning latent image representations. In this paper, we tackle the problem of fully- unsupervised clustering of medical images using pixel data only. We test the performance of several contemporary approaches, built on top of a convolutional autoencoder (CAE) – convolutional deep embedded clustering (CDEC) and convolutional improved deep embedded clustering (CIDEC) – and three approaches based on preset feature extraction – histogram of oriented gradients (HOG), local binary pattern (LBP) and principal component analysis (PCA). CDEC and CIDEC are end- to-end clustering solutions, involving simultaneous learning of latent representations and clustering assignments, whereas the remaining approaches rely on k-means clustering from fixed embeddings. We train the models on 30, 000 images, and test them using a separate test set consisting of 8, 000 images. We sampled the data from the PACS repository archive of the Clinical Hospital Centre Rijeka. For evaluation, we use silhouette score, homogeneity score and normalised mutual information (NMI) on two target parameters, closely associated with commonly occurring DICOM tags – Modality and anatomical region (adjusted BodyPartExamined tag). CIDEC attains an NMI score of 0.473 with respect to anatomical region, and CDEC attains an NMI score of 0.645 with respect to the tag Modality – both outperforming other commonly used feature descriptors.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Kliničke medicinske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2020-02-3770 - Strojno učenje za prijenos znanja u medicinskoj radiologiji (RadiologyNET) (Štajduhar, Ivan, HRZZ - 2020-02) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-15 - Razvoj postupaka temeljenih na strojnom učenju za prepoznavanje bolesti i ozljeda iz medicinskih slika (Štajduhar, Ivan, NadSve ) ( CroRIS)
MZO-BI-HR/20-21-043 - Analiza hiperspektralnih slika korištenjem strojnog učenja i adaptivnog filtrianja prilagođenog podacima (Lerga, Jonatan, MZO ) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka
Profili:
Ivan Štajduhar
(autor)