Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1139035

Deep embedded clustering algorithm for clustering PACS repositories


Manojlović, Teo; Milanič, Matija; Štajduhar, Ivan
Deep embedded clustering algorithm for clustering PACS repositories // 2021 IEEE 34th International Symposium on Computer- Based Medical Systems (CBMS)
Aveiro, Portugal; online, 2021. str. 401-406 doi:10.1109/CBMS52027.2021.00091 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1139035 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Deep embedded clustering algorithm for clustering PACS repositories

Autori
Manojlović, Teo ; Milanič, Matija ; Štajduhar, Ivan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
2021 IEEE 34th International Symposium on Computer- Based Medical Systems (CBMS) / - , 2021, 401-406

ISBN
978-166544121-6

Skup
34th IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS 2021)

Mjesto i datum
Aveiro, Portugal; online, 07.06.2021. - 09.06.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
convolutional autoencoder ; convolutional deep embedded clustering ; unsupervised learning ; medical image database ; PACS

Sažetak
Creating large datasets of medical radiology images from several sources can be challenging because of the differences in the acquisition and storage standards. One possible way of controlling and/or assessing the image selection process is through medical image clustering. This, however, requires an efficient method for learning latent image representations. In this paper, we tackle the problem of fully- unsupervised clustering of medical images using pixel data only. We test the performance of several contemporary approaches, built on top of a convolutional autoencoder (CAE) – convolutional deep embedded clustering (CDEC) and convolutional improved deep embedded clustering (CIDEC) – and three approaches based on preset feature extraction – histogram of oriented gradients (HOG), local binary pattern (LBP) and principal component analysis (PCA). CDEC and CIDEC are end- to-end clustering solutions, involving simultaneous learning of latent representations and clustering assignments, whereas the remaining approaches rely on k-means clustering from fixed embeddings. We train the models on 30, 000 images, and test them using a separate test set consisting of 8, 000 images. We sampled the data from the PACS repository archive of the Clinical Hospital Centre Rijeka. For evaluation, we use silhouette score, homogeneity score and normalised mutual information (NMI) on two target parameters, closely associated with commonly occurring DICOM tags – Modality and anatomical region (adjusted BodyPartExamined tag). CIDEC attains an NMI score of 0.473 with respect to anatomical region, and CDEC attains an NMI score of 0.645 with respect to the tag Modality – both outperforming other commonly used feature descriptors.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Kliničke medicinske znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-2020-02-3770 - Strojno učenje za prijenos znanja u medicinskoj radiologiji (RadiologyNET) (Štajduhar, Ivan, HRZZ - 2020-02) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-15 - Razvoj postupaka temeljenih na strojnom učenju za prepoznavanje bolesti i ozljeda iz medicinskih slika (Štajduhar, Ivan, NadSve ) ( CroRIS)
MZO-BI-HR/20-21-043 - Analiza hiperspektralnih slika korištenjem strojnog učenja i adaptivnog filtrianja prilagođenog podacima (Lerga, Jonatan, MZO ) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Ivan Štajduhar (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Manojlović, Teo; Milanič, Matija; Štajduhar, Ivan
Deep embedded clustering algorithm for clustering PACS repositories // 2021 IEEE 34th International Symposium on Computer- Based Medical Systems (CBMS)
Aveiro, Portugal; online, 2021. str. 401-406 doi:10.1109/CBMS52027.2021.00091 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Manojlović, T., Milanič, M. & Štajduhar, I. (2021) Deep embedded clustering algorithm for clustering PACS repositories. U: 2021 IEEE 34th International Symposium on Computer- Based Medical Systems (CBMS) doi:10.1109/CBMS52027.2021.00091.
@article{article, author = {Manojlovi\'{c}, Teo and Milani\v{c}, Matija and \v{S}tajduhar, Ivan}, year = {2021}, pages = {401-406}, DOI = {10.1109/CBMS52027.2021.00091}, keywords = {convolutional autoencoder, convolutional deep embedded clustering, unsupervised learning, medical image database, PACS}, doi = {10.1109/CBMS52027.2021.00091}, isbn = {978-166544121-6}, title = {Deep embedded clustering algorithm for clustering PACS repositories}, keyword = {convolutional autoencoder, convolutional deep embedded clustering, unsupervised learning, medical image database, PACS}, publisherplace = {Aveiro, Portugal; online} }
@article{article, author = {Manojlovi\'{c}, Teo and Milani\v{c}, Matija and \v{S}tajduhar, Ivan}, year = {2021}, pages = {401-406}, DOI = {10.1109/CBMS52027.2021.00091}, keywords = {convolutional autoencoder, convolutional deep embedded clustering, unsupervised learning, medical image database, PACS}, doi = {10.1109/CBMS52027.2021.00091}, isbn = {978-166544121-6}, title = {Deep embedded clustering algorithm for clustering PACS repositories}, keyword = {convolutional autoencoder, convolutional deep embedded clustering, unsupervised learning, medical image database, PACS}, publisherplace = {Aveiro, Portugal; online} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font