Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1136998

Generative adversarial network with object detector discriminator for enhanced defect detection on ultrasonic B-scans


Posilović, Luka; Medak, Duje; Subašić, Marko; Budimir, Marko; Lončarić, Sven
Generative adversarial network with object detector discriminator for enhanced defect detection on ultrasonic B-scans // Neurocomputing, 459 (2021), 361-369 doi:10.1016/j.neucom.2021.06.094 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1136998 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Generative adversarial network with object detector discriminator for enhanced defect detection on ultrasonic B-scans

Autori
Posilović, Luka ; Medak, Duje ; Subašić, Marko ; Budimir, Marko ; Lončarić, Sven

Izvornik
Neurocomputing (0925-2312) 459 (2021); 361-369

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Non-destructive testing, Ultrasonic B-scan, Automated defect detection, Image generation, Generative adversarial networks

Sažetak
Non-destructive testing is a set of techniques for defect detection in materials. While the set of imaging techniques is manifold, ultrasonic imaging is the one used the most. The analysis is mainly performed by human inspectors manually analyzing the acquired images. A low number of defects in real ultrasonic inspections and legal issues concerning data from such inspections make it difficult to obtain proper results from automatic ultrasonic image (B-scan) analysis. The goal of presented research is to obtain an improvement of the detection results by expanding the training data set with realistic synthetic samples. In this paper, we present a novel deep learning Generative Adversarial Network model for generating realistic ultrasonic B-scans with defects in distinct locations. Furthermore, we show that generated B-scans can be used for synthetic data augmentation, and can improve the performances of deep convolutional neural object detection networks. Our novel method was developed on a dataset with almost 4000 images and more than 6000 annotated defects. When trained only on real data, detector can achieve an average precision of 70\%. By training only on generated data the results increased to 72\%, and by mixing generated and real data we achieve almost 76\% average precision. We believe that synthetic data generation can generalize to other tasks with limited data. It could also be used for training human personnel.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
INETEC

Profili:

Avatar Url Marko Subašić (autor)

Avatar Url Sven Lončarić (autor)

Avatar Url Marko Budimir (autor)

Avatar Url Duje Medak (autor)

Avatar Url Luka Posilović (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Posilović, Luka; Medak, Duje; Subašić, Marko; Budimir, Marko; Lončarić, Sven
Generative adversarial network with object detector discriminator for enhanced defect detection on ultrasonic B-scans // Neurocomputing, 459 (2021), 361-369 doi:10.1016/j.neucom.2021.06.094 (međunarodna recenzija, članak, znanstveni)
Posilović, L., Medak, D., Subašić, M., Budimir, M. & Lončarić, S. (2021) Generative adversarial network with object detector discriminator for enhanced defect detection on ultrasonic B-scans. Neurocomputing, 459, 361-369 doi:10.1016/j.neucom.2021.06.094.
@article{article, author = {Posilovi\'{c}, Luka and Medak, Duje and Suba\v{s}i\'{c}, Marko and Budimir, Marko and Lon\v{c}ari\'{c}, Sven}, year = {2021}, pages = {361-369}, DOI = {10.1016/j.neucom.2021.06.094}, keywords = {Non-destructive testing, Ultrasonic B-scan, Automated defect detection, Image generation, Generative adversarial networks}, journal = {Neurocomputing}, doi = {10.1016/j.neucom.2021.06.094}, volume = {459}, issn = {0925-2312}, title = {Generative adversarial network with object detector discriminator for enhanced defect detection on ultrasonic B-scans}, keyword = {Non-destructive testing, Ultrasonic B-scan, Automated defect detection, Image generation, Generative adversarial networks} }
@article{article, author = {Posilovi\'{c}, Luka and Medak, Duje and Suba\v{s}i\'{c}, Marko and Budimir, Marko and Lon\v{c}ari\'{c}, Sven}, year = {2021}, pages = {361-369}, DOI = {10.1016/j.neucom.2021.06.094}, keywords = {Non-destructive testing, Ultrasonic B-scan, Automated defect detection, Image generation, Generative adversarial networks}, journal = {Neurocomputing}, doi = {10.1016/j.neucom.2021.06.094}, volume = {459}, issn = {0925-2312}, title = {Generative adversarial network with object detector discriminator for enhanced defect detection on ultrasonic B-scans}, keyword = {Non-destructive testing, Ultrasonic B-scan, Automated defect detection, Image generation, Generative adversarial networks} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font