Pregled bibliografske jedinice broj: 1136826
Tweet2Sent: Web application for Visualizing Sentiment from Tweets
Tweet2Sent: Web application for Visualizing Sentiment from Tweets, 2021., diplomski rad, preddiplomski, Fakultet elektrotehnike i računarstva, Zagreb
CROSBI ID: 1136826 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Tweet2Sent: Web application for Visualizing
Sentiment from Tweets
Autori
Kranjčević, Leon
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, preddiplomski
Fakultet
Fakultet elektrotehnike i računarstva
Mjesto
Zagreb
Datum
09.07
Godina
2021
Stranica
37
Mentor
Bagić Babac, Marina
Ključne riječi
sentiment analysis ; natural language processing ; stemming ; web scraping ; polarity ; subjectivity ; visualizing
Sažetak
Online social network Twitter allows users to upload short text messages - tweets, and this restriction encourages users to construct focused, timely updates. From the perspective of text analysis, it remains a challenging task to estimate and visualize sentiment for such short and incomplete text snippets. The specific goal of this thesis is to develop a web application for tweet retrieval and visualization that presents sentiment and basic emotional properties embodied in the text. Sentiment from text should be estimated using lexicon-based methods.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Marina Bagić Babac
(mentor)