Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1136680

Automatic Question Generation Using Semantic Role Labeling for Morphologically Rich Languages


Vasić, Daniel; Žitko, Branko; Ljubić, Hrvoje
Automatic Question Generation Using Semantic Role Labeling for Morphologically Rich Languages // Tehnički vjesnik : znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku, 28 (2021), 3; 739-745 doi:10.17559/tv-20200402175619 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1136680 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Automatic Question Generation Using Semantic Role Labeling for Morphologically Rich Languages

Autori
Vasić, Daniel ; Žitko, Branko ; Ljubić, Hrvoje

Izvornik
Tehnički vjesnik : znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku (1330-3651) 28 (2021), 3; 739-745

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
automatic question generation ; morphologically rich languages ; natural language processing ; semantic role labeling

Sažetak
In this paper, a novel approach to automatic question generation (AQG) using semantic role labeling (SRL) for morphologically rich languages is presented. A model for AQG is developed for our native speaking language, Croatian. Croatian language is a highly inflected language that belongs to Balto-Slavic family of languages. Globally this article can be divided into two stages. In the first stage we present a novel approach to SRL of texts written in Croatian language that uses Conditional Random Fields (CRF). SRL traditionally consists of predicate disambiguation, argument identification and argument classification. After these steps most approaches use beam search to find optimal sequence of arguments based on given predicate. We propose the architecture for predicate identification and argument classification in which finding the best sequence of arguments is handled by Viterbi decoding. We enrich SRL features with custom attributes that are custom made for this language. Our SRL system achieves F1 score of 78% in argument classification step on Croatian hr 500k corpus. In the second stage the proposed SRL model is used to develop AQG system for question generation from texts written in Croatian language. We proposed custom templates for AQG that were used to generate a total of 628 questions which were evaluated by experts scoring every question on a Likert scale. Expert evaluation of the system showed that our AQG achieved good results. The evaluation showed that 68% of the generated questions could be used for educational purposes. With these results the proposed AQG system could be used for possible implementation inside educational systems such as Intelligent Tutoring Systems.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Split

Profili:

Avatar Url Branko Žitko (autor)

Poveznice na cjeloviti tekst rada:

doi hrcak.srce.hr

Citiraj ovu publikaciju:

Vasić, Daniel; Žitko, Branko; Ljubić, Hrvoje
Automatic Question Generation Using Semantic Role Labeling for Morphologically Rich Languages // Tehnički vjesnik : znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku, 28 (2021), 3; 739-745 doi:10.17559/tv-20200402175619 (međunarodna recenzija, članak, znanstveni)
Vasić, D., Žitko, B. & Ljubić, H. (2021) Automatic Question Generation Using Semantic Role Labeling for Morphologically Rich Languages. Tehnički vjesnik : znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku, 28 (3), 739-745 doi:10.17559/tv-20200402175619.
@article{article, author = {Vasi\'{c}, Daniel and \v{Z}itko, Branko and Ljubi\'{c}, Hrvoje}, year = {2021}, pages = {739-745}, DOI = {10.17559/tv-20200402175619}, keywords = {automatic question generation, morphologically rich languages, natural language processing, semantic role labeling}, journal = {Tehni\v{c}ki vjesnik : znanstveno-stru\v{c}ni \v{c}asopis tehni\v{c}kih fakulteta Sveu\v{c}ili\v{s}ta u Osijeku}, doi = {10.17559/tv-20200402175619}, volume = {28}, number = {3}, issn = {1330-3651}, title = {Automatic Question Generation Using Semantic Role Labeling for Morphologically Rich Languages}, keyword = {automatic question generation, morphologically rich languages, natural language processing, semantic role labeling} }
@article{article, author = {Vasi\'{c}, Daniel and \v{Z}itko, Branko and Ljubi\'{c}, Hrvoje}, year = {2021}, pages = {739-745}, DOI = {10.17559/tv-20200402175619}, keywords = {automatic question generation, morphologically rich languages, natural language processing, semantic role labeling}, journal = {Tehni\v{c}ki vjesnik : znanstveno-stru\v{c}ni \v{c}asopis tehni\v{c}kih fakulteta Sveu\v{c}ili\v{s}ta u Osijeku}, doi = {10.17559/tv-20200402175619}, volume = {28}, number = {3}, issn = {1330-3651}, title = {Automatic Question Generation Using Semantic Role Labeling for Morphologically Rich Languages}, keyword = {automatic question generation, morphologically rich languages, natural language processing, semantic role labeling} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font