Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1134297

Antimicrobial activity of quasi-enantiomeric cinchona alkaloid derivatives and prediction model developed by machine learning


Ramić, Alma; Skočibušić, Mirjana; Odžak, Renata; Čipak Gašparović, Ana; Milković, Lidija; Mikelić, Ana; Sović, Karlo; Primožič, Ines; Hrenar, Tomica
Antimicrobial activity of quasi-enantiomeric cinchona alkaloid derivatives and prediction model developed by machine learning // Antibiotics, 10 (2021), 6; 659, 15 doi:10.3390/antibiotics10060659 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1134297 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Antimicrobial activity of quasi-enantiomeric cinchona alkaloid derivatives and prediction model developed by machine learning

Autori
Ramić, Alma ; Skočibušić, Mirjana ; Odžak, Renata ; Čipak Gašparović, Ana ; Milković, Lidija ; Mikelić, Ana ; Sović, Karlo ; Primožič, Ines ; Hrenar, Tomica

Izvornik
Antibiotics (2079-6382) 10 (2021), 6; 659, 15

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
quaternary cinchonidines ; quaternary cinchonines ; antimicrobial activity ; cytotoxicity ; ROS ; activity/PES model ; machine learning

Sažetak
Bacterial infections that do not respond to current treatments are increasing, thus there is a need for the development of new antibiotics. Series of 20 N-substituted quaternary salts of cinchonidine (CD) and their quasi-enantiomer cinchonine (CN) were prepared and their antimicrobial activity was assessed against a diverse panel of Gram-positive and Gram-negative bacteria. All tested compounds showed good antimicrobial potential (minimum inhibitory concentration (MIC) values 1.56 to 125.00 μg/mL), proved to be nontoxic to different human cell lines, and did not influence the production of reactive oxygen species (ROS). Seven compounds showed very strong bioactivity against some of the tested Gram-negative bacteria (MIC for E. coli and K. pneumoniae 6.25 μg/mL ; MIC for P. aeruginosa 1.56 μg/mL). To establish a connection between antimicrobial data and potential energy surfaces (PES) of the compounds, activity/PES models using principal components of the disc diffusion assay and MIC and data towards PES data were built. An extensive machine learning procedure for the generation and cross- validation of multivariate linear regression models with a linear combination of original variables as well as their higher- order polynomial terms was performed. The best possible models with predicted R2(CD derivatives) = 0.9979 and R2(CN derivatives) = 0.9873 were established and presented. This activity/PES model can be used for accurate prediction of activities for new compounds based solely on their potential energy surfaces, which will enable wider screening and guided search for new potential leads. Based on the obtained results, N-quaternary derivatives of Cinchona alkaloids proved to be an excellent scaffold for further optimization of novel antibiotic species.

Izvorni jezik
Engleski

Znanstvena područja
Kemija, Biologija



POVEZANOST RADA


Projekti:
HRZZ-IP-2016-06-3775 - Aktivnošću i in silico usmjeren dizajn malih bioaktivnih molekula (ADESIRE) (Hrenar, Tomica, HRZZ - 2016-06) ( CroRIS)

Ustanove:
Institut "Ruđer Bošković", Zagreb,
Prirodoslovno-matematički fakultet, Zagreb,
Prirodoslovno-matematički fakultet, Split

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com fulir.irb.hr

Citiraj ovu publikaciju:

Ramić, Alma; Skočibušić, Mirjana; Odžak, Renata; Čipak Gašparović, Ana; Milković, Lidija; Mikelić, Ana; Sović, Karlo; Primožič, Ines; Hrenar, Tomica
Antimicrobial activity of quasi-enantiomeric cinchona alkaloid derivatives and prediction model developed by machine learning // Antibiotics, 10 (2021), 6; 659, 15 doi:10.3390/antibiotics10060659 (međunarodna recenzija, članak, znanstveni)
Ramić, A., Skočibušić, M., Odžak, R., Čipak Gašparović, A., Milković, L., Mikelić, A., Sović, K., Primožič, I. & Hrenar, T. (2021) Antimicrobial activity of quasi-enantiomeric cinchona alkaloid derivatives and prediction model developed by machine learning. Antibiotics, 10 (6), 659, 15 doi:10.3390/antibiotics10060659.
@article{article, author = {Rami\'{c}, Alma and Sko\v{c}ibu\v{s}i\'{c}, Mirjana and Od\v{z}ak, Renata and \v{C}ipak Ga\v{s}parovi\'{c}, Ana and Milkovi\'{c}, Lidija and Mikeli\'{c}, Ana and Sovi\'{c}, Karlo and Primo\v{z}i\v{c}, Ines and Hrenar, Tomica}, year = {2021}, pages = {15}, DOI = {10.3390/antibiotics10060659}, chapter = {659}, keywords = {quaternary cinchonidines, quaternary cinchonines, antimicrobial activity, cytotoxicity, ROS, activity/PES model, machine learning}, journal = {Antibiotics}, doi = {10.3390/antibiotics10060659}, volume = {10}, number = {6}, issn = {2079-6382}, title = {Antimicrobial activity of quasi-enantiomeric cinchona alkaloid derivatives and prediction model developed by machine learning}, keyword = {quaternary cinchonidines, quaternary cinchonines, antimicrobial activity, cytotoxicity, ROS, activity/PES model, machine learning}, chapternumber = {659} }
@article{article, author = {Rami\'{c}, Alma and Sko\v{c}ibu\v{s}i\'{c}, Mirjana and Od\v{z}ak, Renata and \v{C}ipak Ga\v{s}parovi\'{c}, Ana and Milkovi\'{c}, Lidija and Mikeli\'{c}, Ana and Sovi\'{c}, Karlo and Primo\v{z}i\v{c}, Ines and Hrenar, Tomica}, year = {2021}, pages = {15}, DOI = {10.3390/antibiotics10060659}, chapter = {659}, keywords = {quaternary cinchonidines, quaternary cinchonines, antimicrobial activity, cytotoxicity, ROS, activity/PES model, machine learning}, journal = {Antibiotics}, doi = {10.3390/antibiotics10060659}, volume = {10}, number = {6}, issn = {2079-6382}, title = {Antimicrobial activity of quasi-enantiomeric cinchona alkaloid derivatives and prediction model developed by machine learning}, keyword = {quaternary cinchonidines, quaternary cinchonines, antimicrobial activity, cytotoxicity, ROS, activity/PES model, machine learning}, chapternumber = {659} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font