Pregled bibliografske jedinice broj: 1132242
Multi-target antimicrobial activity model of Cinchona alkaloids established by machine learning
Multi-target antimicrobial activity model of Cinchona alkaloids established by machine learning // Math/Chem/Comp 2021 - 32nd MC2 Conference: Book of Abstracts / Vančik, Hrvoj ; Cioslowski, Jerzy ; Namjesnik, Danijel (ur.).
Zagreb: Hrvatsko kemijsko društvo, 2021. str. 33-33 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1132242 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Multi-target antimicrobial activity model of
Cinchona alkaloids established by machine learning
Autori
Mikelić, Ana ; Primožič, Ines ; Ramić, Alma ; Odžak, Renata ; Hrenar, Tomica
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Math/Chem/Comp 2021 - 32nd MC2 Conference: Book of Abstracts
/ Vančik, Hrvoj ; Cioslowski, Jerzy ; Namjesnik, Danijel - Zagreb : Hrvatsko kemijsko društvo, 2021, 33-33
ISBN
978-953-8334-02-3
Skup
32nd International Course and Conference on the Interfaces among Mathematics, Chemistry and Computer Sciences: Mathematics, Chemistry, Computing (Math/Chem/Comp, MC2-32)
Mjesto i datum
Dubrovnik, Hrvatska, 07.06.2021. - 11.06.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
antimicrobial activity, Cinchona alkaloids, machine learning, principal component analysis, potential energy surfaces, ab initio molecular dynamics, multivariate linear regression
Sažetak
Antimicrobial activity of Cinchona alkaloids derivatives [1] was previously evaluated by using disc diffusion assay against a panel of various Gram-positive and Gram-negative bacteria. Principal components of the activity data were extracted by 2nd-order tensor decomposition and used as dependent variables for multivariate linear regression, whereas theoretically computed energy fingerprints of all compounds were used as independent variables. Potential energy surfaces (PES) of compounds were sampled by performing molecular dynamics simulations and then decomposed by principal component analysis. Regression models were generated by extensive machine learning multivariate linear regression – linear combinations of original variables were used as well as their higher-order polynomial terms. Obtained models were thoroughly validated by leave-one-out cross- validation technique (LOO- CV) [2]. The optimal activity/PES model based on the adjusted and the predicted R2 values as well as LOO-CV mean squared error will be presented.
Izvorni jezik
Engleski
Znanstvena područja
Kemija
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-3775 - Aktivnošću i in silico usmjeren dizajn malih bioaktivnih molekula (ADESIRE) (Hrenar, Tomica, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Zagreb,
Prirodoslovno-matematički fakultet, Split
Profili:
Tomica Hrenar (autor)
Renata Odžak (autor)
Alma Ramic (autor)
Ines Primožič (autor)
Ana Mikelić (autor)