Pregled bibliografske jedinice broj: 1131638
Breast cancer classification
Breast cancer classification // Proceedings of the International Scientific Student Conference RI-STEM-2021 / Lorencin, Ivan ; Baressi Šegota, Sandi (ur.).
Rijeka, 2021. str. 129-133 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1131638 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Breast cancer classification
Autori
Radovanović, Nikola
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the International Scientific Student Conference RI-STEM-2021
/ Lorencin, Ivan ; Baressi Šegota, Sandi - Rijeka, 2021, 129-133
ISBN
978-953-8246-22-7
Skup
International Student Scientific Conference (Ri-STEM 2021)
Mjesto i datum
Rijeka, Hrvatska, 10.06.2021. - 11.06.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Breast cancer ; Classification ; Cross-validation ; Decision tree ; Feature selection ; K-Nearest neighbours ; Random forest
Sažetak
Breast cancer is most frequently diagnosed cancer and the second most frequent cause of death in women. Early detection and treatment is the key for the patient’s health and reduced mortality. Machine learning classification can be used to help physicians in early diagnosis and classification of breast tumours. In this paper, three types of classifiers are presented: Random forest, Decision tree, and K-nearest neighbours for breast cancer classification. The classifiers are evaluated and compared. Techniques for improvement: feature selection, grid search and hyperparameter tuning reduce training time and improve performances of the classifiers. The highest accuracy is achieved by Random forest classifier (99.41%).
Izvorni jezik
Engleski
Znanstvena područja
Interdisciplinarne tehničke znanosti, Temeljne medicinske znanosti
POVEZANOST RADA