Pregled bibliografske jedinice broj: 1131620
Forest Covertype Prediction based on cartographic parameters using neural network
Forest Covertype Prediction based on cartographic parameters using neural network // Ri-STEM-2021 Proceedings / Lorencin, Ivan ; Baressi Šegota, Sandi ; Car, Zlatan (ur.).
Rijeka, Hrvatska, 2021. str. 141-145 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), ostalo)
CROSBI ID: 1131620 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Forest Covertype Prediction based on cartographic
parameters using neural network
Autori
Lazar Dašić
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), ostalo
Izvornik
Ri-STEM-2021 Proceedings
/ Lorencin, Ivan ; Baressi Šegota, Sandi ; Car, Zlatan - , 2021, 141-145
ISBN
978-953-8246-22-7
Skup
International Student Scientific Conference (Ri-STEM 2021)
Mjesto i datum
Rijeka, Hrvatska, 10.06.2021. - 11.06.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Artificial intelligence, Forest cover type, Multiclass classification, Sparse categorical crossentropy
Sažetak
The study shows success of Artificial Neural Network in making right prediction of forest cover type of certain area based on that area cartographic parameters. The study evaluated area of Roosevelt National Forest in Colorado. Artificial neural network used for making predictions is Multilayer perceptron using Stochastic Gradient Descent as an optimizer and Sparse categorical crossentropy as loss function. The result of the study showed that right neural network model can make over 90% correct predictions, which vastly transcend traditional statistical models. This success means that similar model can be used for making predictions in other areas around the world, which can decrease costs of managing natural resource inventory and even make managing possible for inaccessible areas.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti
POVEZANOST RADA