Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1129013

An empirical study of classification algorithms when dealing with the problem of class imbalance and other data intrinsic characteristics


Dudjak, Mario; Martinović, Goran
An empirical study of classification algorithms when dealing with the problem of class imbalance and other data intrinsic characteristics // Abstract Book - Fifth International Workshop on Data Science / Lončarić, Sven - Zagreb : Centre of Research Excellence for Data Science and Cooperative Systems Research Unit for Data Science, 2020, 38-41
Zagreb, Hrvatska, 2020. str. 38-41 (radionica, nije recenziran, kratko priopćenje, znanstveni)


CROSBI ID: 1129013 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
An empirical study of classification algorithms when dealing with the problem of class imbalance and other data intrinsic characteristics

Autori
Dudjak, Mario ; Martinović, Goran

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, kratko priopćenje, znanstveni

Izvornik
Abstract Book - Fifth International Workshop on Data Science / Lončarić, Sven - Zagreb : Centre of Research Excellence for Data Science and Cooperative Systems Research Unit for Data Science, 2020, 38-41 / - , 2020, 38-41

Skup
5th International Workshop on Data Science (IWDS 2020)

Mjesto i datum
Zagreb, Hrvatska, 24.11.2020

Vrsta sudjelovanja
Radionica

Vrsta recenzije
Nije recenziran

Ključne riječi
class imbalance ; class overlapping ; small disjuncts

Sažetak
Evaluating and comparing the performance and behaviour of different algorithms is a pivotal step when applying machine learning in various application domains. Nevertheless, learning the concepts of real-world problems is a challenging task because of the different intrinsic characteristics that may be present in such datasets. Since not all machine learning algorithms are made equal, these characteristics do not affect their behaviour uniformly. This paper presents a large-scale empirical study of four different types of classifiers in which we try to determine and rank the degrees of correlation between their performance and the level of class imbalance, data rarity, small disjuncts, class overlapping and noise, and provide insight into classifier behaviour when faced with these problems.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:

Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Profili:

Avatar Url Goran Martinović (autor)

Avatar Url Mario Dudjak (autor)

Poveznice na cjeloviti tekst rada:

drive.google.com drive.google.com

Citiraj ovu publikaciju:

Dudjak, Mario; Martinović, Goran
An empirical study of classification algorithms when dealing with the problem of class imbalance and other data intrinsic characteristics // Abstract Book - Fifth International Workshop on Data Science / Lončarić, Sven - Zagreb : Centre of Research Excellence for Data Science and Cooperative Systems Research Unit for Data Science, 2020, 38-41
Zagreb, Hrvatska, 2020. str. 38-41 (radionica, nije recenziran, kratko priopćenje, znanstveni)
Dudjak, M. & Martinović, G. (2020) An empirical study of classification algorithms when dealing with the problem of class imbalance and other data intrinsic characteristics. U: Abstract Book - Fifth International Workshop on Data Science / Lončarić, Sven - Zagreb : Centre of Research Excellence for Data Science and Cooperative Systems Research Unit for Data Science, 2020, 38-41.
@article{article, author = {Dudjak, Mario and Martinovi\'{c}, Goran}, year = {2020}, pages = {38-41}, keywords = {class imbalance, class overlapping, small disjuncts}, title = {An empirical study of classification algorithms when dealing with the problem of class imbalance and other data intrinsic characteristics}, keyword = {class imbalance, class overlapping, small disjuncts}, publisherplace = {Zagreb, Hrvatska} }
@article{article, author = {Dudjak, Mario and Martinovi\'{c}, Goran}, year = {2020}, pages = {38-41}, keywords = {class imbalance, class overlapping, small disjuncts}, title = {An empirical study of classification algorithms when dealing with the problem of class imbalance and other data intrinsic characteristics}, keyword = {class imbalance, class overlapping, small disjuncts}, publisherplace = {Zagreb, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font