Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1125914

Fractal dimensions and two-dimensional slow-fast systems


Huzak, Renato; Crnković, Vlatko; Vlah, Domagoj
Fractal dimensions and two-dimensional slow-fast systems // Journal of Mathematical Analysis and Applications, 501 (2021), 2; 125212, 21 doi:10.1016/j.jmaa.2021.125212 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1125914 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Fractal dimensions and two-dimensional slow-fast systems

Autori
Huzak, Renato ; Crnković, Vlatko ; Vlah, Domagoj

Izvornik
Journal of Mathematical Analysis and Applications (0022-247X) 501 (2021), 2; 125212, 21

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Slow-fast systems ; Slow relation function ; Box dimension ; Fractal zeta function ; Slow-fast Hopf point

Sažetak
In our paper we present a fractal analysis of canard cycles and slow-fast Hopf points in 2-dimensional singular perturbation problems under very general conditions. Our focus is on the orientable case (e.g. R^2) and the non-orientable case (e.g. the Möbius band). Given a slow-fast system, we generate a sequence of real numbers using the so-called slow relation function and compute a fractal dimension of that sequence. Then the value of the fractal dimension enables us to determine the cyclicity and bifurcations of canard cycles in the slow-fast system. We compute the fractal dimension of a slow-fast Hopf point depending on its codimension. Our focus is on the box dimension, one-sided dimensions and the fractal zeta-function. We also find explicit fractal formulas of Cahen-type for the computation of the above fractal dimensions and use them to detect numerically the number of canard limit cycles.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Vlatko Crnković (autor)

Avatar Url Domagoj Vlah (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Huzak, Renato; Crnković, Vlatko; Vlah, Domagoj
Fractal dimensions and two-dimensional slow-fast systems // Journal of Mathematical Analysis and Applications, 501 (2021), 2; 125212, 21 doi:10.1016/j.jmaa.2021.125212 (međunarodna recenzija, članak, znanstveni)
Huzak, R., Crnković, V. & Vlah, D. (2021) Fractal dimensions and two-dimensional slow-fast systems. Journal of Mathematical Analysis and Applications, 501 (2), 125212, 21 doi:10.1016/j.jmaa.2021.125212.
@article{article, author = {Huzak, Renato and Crnkovi\'{c}, Vlatko and Vlah, Domagoj}, year = {2021}, pages = {21}, DOI = {10.1016/j.jmaa.2021.125212}, chapter = {125212}, keywords = {Slow-fast systems, Slow relation function, Box dimension, Fractal zeta function, Slow-fast Hopf point}, journal = {Journal of Mathematical Analysis and Applications}, doi = {10.1016/j.jmaa.2021.125212}, volume = {501}, number = {2}, issn = {0022-247X}, title = {Fractal dimensions and two-dimensional slow-fast systems}, keyword = {Slow-fast systems, Slow relation function, Box dimension, Fractal zeta function, Slow-fast Hopf point}, chapternumber = {125212} }
@article{article, author = {Huzak, Renato and Crnkovi\'{c}, Vlatko and Vlah, Domagoj}, year = {2021}, pages = {21}, DOI = {10.1016/j.jmaa.2021.125212}, chapter = {125212}, keywords = {Slow-fast systems, Slow relation function, Box dimension, Fractal zeta function, Slow-fast Hopf point}, journal = {Journal of Mathematical Analysis and Applications}, doi = {10.1016/j.jmaa.2021.125212}, volume = {501}, number = {2}, issn = {0022-247X}, title = {Fractal dimensions and two-dimensional slow-fast systems}, keyword = {Slow-fast systems, Slow relation function, Box dimension, Fractal zeta function, Slow-fast Hopf point}, chapternumber = {125212} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font