Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1125909

Assessing the Robustness of Cluster Solutions in Emotionally-Annotated Pictures Using Monte- Carlo Simulation Stabilized K-Means Algorithm


Horvat, Marko; Jović, Alan; Burnik, Kristijan
Assessing the Robustness of Cluster Solutions in Emotionally-Annotated Pictures Using Monte- Carlo Simulation Stabilized K-Means Algorithm // Machine Learning and Knowledge Extraction, 3 (2021), 2; 435-452 doi:10.3390/make3020022 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1125909 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Assessing the Robustness of Cluster Solutions in Emotionally-Annotated Pictures Using Monte- Carlo Simulation Stabilized K-Means Algorithm

Autori
Horvat, Marko ; Jović, Alan ; Burnik, Kristijan

Izvornik
Machine Learning and Knowledge Extraction (2504-4990) 3 (2021), 2; 435-452

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
multimedia ; clustering ; k-means ; Monte-Carlo simulation ; cluster distribution ; emotion ; affective computing

Sažetak
Clustering is a very popular machine-learning technique that is often used in data exploration of continuous variables. In general, there are two problems commonly encountered in clustering: (1) the selection of the optimal number of clusters, and (2) the undecidability of the affiliation of border data points to neighboring clusters. We address both problems and describe how to solve them in application to affective multimedia databases. In the experiment, we used the unsupervised learning algorithm k-means and the Nencki Affective Picture System (NAPS) dataset, which contains 1356 semantically and emotionally annotated pictures. The optimal number of centroids was estimated, using the empirical elbow and silhouette rules, and validated using the Monte-Carlo simulation approach. Clustering with k = 1–50 centroids is reported, along with dominant picture keywords and descriptive statistical parameters. Affective multimedia databases, such as the NAPS, have been specifically designed for emotion and attention experiments. By estimating the optimal cluster solutions, it was possible to gain deeper insight into affective features of visual stimuli. Finally, a custom software application was developed for study in the Python programming language. The tool uses the scikit- learn library for the implementation of machine-learning algorithms, data exploration and visualization. The tool is freely available for scientific and non-commercial purposes.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Marko Horvat (autor)

Avatar Url Alan Jović (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Horvat, Marko; Jović, Alan; Burnik, Kristijan
Assessing the Robustness of Cluster Solutions in Emotionally-Annotated Pictures Using Monte- Carlo Simulation Stabilized K-Means Algorithm // Machine Learning and Knowledge Extraction, 3 (2021), 2; 435-452 doi:10.3390/make3020022 (međunarodna recenzija, članak, znanstveni)
Horvat, M., Jović, A. & Burnik, K. (2021) Assessing the Robustness of Cluster Solutions in Emotionally-Annotated Pictures Using Monte- Carlo Simulation Stabilized K-Means Algorithm. Machine Learning and Knowledge Extraction, 3 (2), 435-452 doi:10.3390/make3020022.
@article{article, author = {Horvat, Marko and Jovi\'{c}, Alan and Burnik, Kristijan}, year = {2021}, pages = {435-452}, DOI = {10.3390/make3020022}, keywords = {multimedia, clustering, k-means, Monte-Carlo simulation, cluster distribution, emotion, affective computing}, journal = {Machine Learning and Knowledge Extraction}, doi = {10.3390/make3020022}, volume = {3}, number = {2}, issn = {2504-4990}, title = {Assessing the Robustness of Cluster Solutions in Emotionally-Annotated Pictures Using Monte- Carlo Simulation Stabilized K-Means Algorithm}, keyword = {multimedia, clustering, k-means, Monte-Carlo simulation, cluster distribution, emotion, affective computing} }
@article{article, author = {Horvat, Marko and Jovi\'{c}, Alan and Burnik, Kristijan}, year = {2021}, pages = {435-452}, DOI = {10.3390/make3020022}, keywords = {multimedia, clustering, k-means, Monte-Carlo simulation, cluster distribution, emotion, affective computing}, journal = {Machine Learning and Knowledge Extraction}, doi = {10.3390/make3020022}, volume = {3}, number = {2}, issn = {2504-4990}, title = {Assessing the Robustness of Cluster Solutions in Emotionally-Annotated Pictures Using Monte- Carlo Simulation Stabilized K-Means Algorithm}, keyword = {multimedia, clustering, k-means, Monte-Carlo simulation, cluster distribution, emotion, affective computing} }

Uključenost u ostale bibliografske baze podataka::


  • Academic OneFile (Gale)
  • dblp Computer Science Bibliography
  • DOAJ
  • ProQuest
  • Web of Science (ESCI)


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font