Pregled bibliografske jedinice broj: 1124874
Machine learning-based prediction of multi-target antimicrobial activity
Machine learning-based prediction of multi-target antimicrobial activity // Simpozij studenata doktorskih studija PMF-a : knjiga sažetaka / Barišić, Dajana (ur.).
Zagreb, 2021. str. 358-359 (poster, domaća recenzija, sažetak, znanstveni)
CROSBI ID: 1124874 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Machine learning-based prediction of multi-target
antimicrobial activity
Autori
Mikelić, Ana ; Primožič, Ines ; Ramić, Alma ; Odžak, Renata ; Hrenar, Tomica
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Simpozij studenata doktorskih studija PMF-a : knjiga sažetaka
/ Barišić, Dajana - Zagreb, 2021, 358-359
ISBN
978-953-6076-90-1
Skup
5. Simpozij studenata doktorskih studija PMF-a = 5th Faculty of Science PhD Student Symposium
Mjesto i datum
Zagreb, Hrvatska, 24.04.2021. - 25.04.2021
Vrsta sudjelovanja
Poster
Vrsta recenzije
Domaća recenzija
Ključne riječi
machine learning ; multivariate linear regression ; principal component analysis ; potential energy surface ; ab initio molecular dynamics ; antimicrobial activity ; Cinchona alkaloids derivatives
Sažetak
Reduced space of multi-target antimicrobial activities was used as a dependent variable for estimation of Cinchona alkaloids derivatives [1] activities. A panel of various Gram- positive and Gram-negative bacteria provided activity data whose principal components were extracted by 2nd-order tensor decomposition. These principal components were regressed on the theoretically computed energy fingerprints of all compounds. Extensive machine learning procedure was applied for generation of multivariate linear regression models with linear combination of original variables as well as their higher- order polynomial terms. Regression models of antimicrobial activity in dependence on molecular dynamics data were builded and thoroughly validated by leave-one- out cross- validation technique (LOO-CV) [2]. The most optimal representation was selected on the basis of R2 values and LOO-CV mean squared error and is presented on Fig. 1.
Izvorni jezik
Engleski
Znanstvena područja
Kemija
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-3775 - Aktivnošću i in silico usmjeren dizajn malih bioaktivnih molekula (ADESIRE) (Hrenar, Tomica, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Zagreb,
Prirodoslovno-matematički fakultet, Split
Profili:
Tomica Hrenar (autor)
Renata Odžak (autor)
Alma Ramic (autor)
Ines Primožič (autor)
Ana Mikelić (autor)