Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1124633

On the Universal Unfolding of Vector Fields in One Variable: A Proof of Kostov’s Theorem


Klimeš, Martin; Rousseau, Christiane
On the Universal Unfolding of Vector Fields in One Variable: A Proof of Kostov’s Theorem // Qualitative Theory of Dynamical Systems, 19 (2020), 3; 80, 13 doi:10.1007/s12346-020-00416-y (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1124633 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
On the Universal Unfolding of Vector Fields in One Variable: A Proof of Kostov’s Theorem

Autori
Klimeš, Martin ; Rousseau, Christiane

Izvornik
Qualitative Theory of Dynamical Systems (1575-5460) 19 (2020), 3; 80, 13

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
normal forms of analytic vector fields ; unfolding of singularities ; versal deformations

Sažetak
In this note we present variants of Kostov's theorem on a versal deformation of a parabolic point of a complex analytic 1-dimensional vector field. First we provide a self-contained proof of Kostov's theorem, together with a proof that this versal deformation is indeed universal. We then generalize to the real analytic and formal cases, where we show universality, and to the C-infinity case, where we show that only versality is possible.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Profili:

Avatar Url Martin Klimeš (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Klimeš, Martin; Rousseau, Christiane
On the Universal Unfolding of Vector Fields in One Variable: A Proof of Kostov’s Theorem // Qualitative Theory of Dynamical Systems, 19 (2020), 3; 80, 13 doi:10.1007/s12346-020-00416-y (međunarodna recenzija, članak, znanstveni)
Klimeš, M. & Rousseau, C. (2020) On the Universal Unfolding of Vector Fields in One Variable: A Proof of Kostov’s Theorem. Qualitative Theory of Dynamical Systems, 19 (3), 80, 13 doi:10.1007/s12346-020-00416-y.
@article{article, author = {Klime\v{s}, Martin and Rousseau, Christiane}, year = {2020}, pages = {13}, DOI = {10.1007/s12346-020-00416-y}, chapter = {80}, keywords = {normal forms of analytic vector fields, unfolding of singularities, versal deformations}, journal = {Qualitative Theory of Dynamical Systems}, doi = {10.1007/s12346-020-00416-y}, volume = {19}, number = {3}, issn = {1575-5460}, title = {On the Universal Unfolding of Vector Fields in One Variable: A Proof of Kostov’s Theorem}, keyword = {normal forms of analytic vector fields, unfolding of singularities, versal deformations}, chapternumber = {80} }
@article{article, author = {Klime\v{s}, Martin and Rousseau, Christiane}, year = {2020}, pages = {13}, DOI = {10.1007/s12346-020-00416-y}, chapter = {80}, keywords = {normal forms of analytic vector fields, unfolding of singularities, versal deformations}, journal = {Qualitative Theory of Dynamical Systems}, doi = {10.1007/s12346-020-00416-y}, volume = {19}, number = {3}, issn = {1575-5460}, title = {On the Universal Unfolding of Vector Fields in One Variable: A Proof of Kostov’s Theorem}, keyword = {normal forms of analytic vector fields, unfolding of singularities, versal deformations}, chapternumber = {80} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font