Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1123370

An Enhanced Histopathology Analysis: An AI- Based System for Multiclass Grading of Oral Squamous Cell Carcinoma and Segmenting of Epithelial and Stromal Tissue


Musulin, Jelena; Štifanić, Daniel; Zulijani, Ana; Ćabov, Tomislav; Dekanić, Andrea; Car, Zlatan
An Enhanced Histopathology Analysis: An AI- Based System for Multiclass Grading of Oral Squamous Cell Carcinoma and Segmenting of Epithelial and Stromal Tissue // Cancers, 13 (2021), 8; 1-21 doi:10.3390/cancers13081784 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1123370 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
An Enhanced Histopathology Analysis: An AI- Based System for Multiclass Grading of Oral Squamous Cell Carcinoma and Segmenting of Epithelial and Stromal Tissue

Autori
Musulin, Jelena ; Štifanić, Daniel ; Zulijani, Ana ; Ćabov, Tomislav ; Dekanić, Andrea ; Car, Zlatan

Izvornik
Cancers (2072-6694) 13 (2021), 8; 1-21

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
AI-based system ; data preprocessing ; histopathological images ; oral squamous cell carcinoma

Sažetak
Oral squamous cell carcinoma is most frequent histological neoplasm of head and neck cancers, and although it is localized in a region that is accessible to see and can be detected very early, this usually does not occur. The standard procedure for the diagnosis of oral cancer is based on histopathological examination, however, the main problem in this kind of procedure is tumor heterogeneity where a subjective component of the examination could directly impact patient- specific treatment intervention. For this reason, artificial intelligence (AI) algorithms are widely used as computational aid in the diagnosis for classification and segmentation of tumors, in order to reduce inter- and intra-observer variability. In this research, a two-stage AI- based system for automatic multiclass grading (the first stage) and segmentation of the epithelial and stromal tissue (the second stage) from oral histopathological images is proposed in order to assist the clinician in oral squamous cell carcinoma diagnosis. The integration of Xception and SWT resulted in the highest classification value of 0.963 (σ = 0.042) AUCmacro and 0.966 (σ = 0.027) AUCmicro while using DeepLabv3+ along with Xception_65 as backbone and data preprocessing, semantic segmentation prediction resulted in 0.878 (σ = 0.027) mIOU and 0.955 (σ = 0.014) F1 score. Obtained results reveal that the proposed AI- based system has great potential in the diagnosis of OSCC.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Temeljne tehničke znanosti, Temeljne medicinske znanosti, Kliničke medicinske znanosti



POVEZANOST RADA


Projekti:
Ostalo-CEI - 305.6019-20 - Use of regressive artificial intelligence (AI) and machine learning (ML) methods in modelling of COVID-19 spread (COVIDAi) (Car, Zlatan, Ostalo - CEI Extraordinary Call for Proposals 2020) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
InoUstZnVO-CIII-HR-0108-10 - Concurrent Product and Technology Development - Teaching, Research and Implementation of Joint Programs Oriented in Production and Industrial Engineering (Car, Zlatan, InoUstZnVO - CEEPUS) ( CroRIS)
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)

Ustanove:
Medicinski fakultet, Rijeka,
Tehnički fakultet, Rijeka,
Klinički bolnički centar Rijeka,
Fakultet dentalne medicine, Rijeka

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Musulin, Jelena; Štifanić, Daniel; Zulijani, Ana; Ćabov, Tomislav; Dekanić, Andrea; Car, Zlatan
An Enhanced Histopathology Analysis: An AI- Based System for Multiclass Grading of Oral Squamous Cell Carcinoma and Segmenting of Epithelial and Stromal Tissue // Cancers, 13 (2021), 8; 1-21 doi:10.3390/cancers13081784 (međunarodna recenzija, članak, znanstveni)
Musulin, J., Štifanić, D., Zulijani, A., Ćabov, T., Dekanić, A. & Car, Z. (2021) An Enhanced Histopathology Analysis: An AI- Based System for Multiclass Grading of Oral Squamous Cell Carcinoma and Segmenting of Epithelial and Stromal Tissue. Cancers, 13 (8), 1-21 doi:10.3390/cancers13081784.
@article{article, author = {Musulin, Jelena and \v{S}tifani\'{c}, Daniel and Zulijani, Ana and \'{C}abov, Tomislav and Dekani\'{c}, Andrea and Car, Zlatan}, year = {2021}, pages = {1-21}, DOI = {10.3390/cancers13081784}, keywords = {AI-based system, data preprocessing, histopathological images, oral squamous cell carcinoma}, journal = {Cancers}, doi = {10.3390/cancers13081784}, volume = {13}, number = {8}, issn = {2072-6694}, title = {An Enhanced Histopathology Analysis: An AI- Based System for Multiclass Grading of Oral Squamous Cell Carcinoma and Segmenting of Epithelial and Stromal Tissue}, keyword = {AI-based system, data preprocessing, histopathological images, oral squamous cell carcinoma} }
@article{article, author = {Musulin, Jelena and \v{S}tifani\'{c}, Daniel and Zulijani, Ana and \'{C}abov, Tomislav and Dekani\'{c}, Andrea and Car, Zlatan}, year = {2021}, pages = {1-21}, DOI = {10.3390/cancers13081784}, keywords = {AI-based system, data preprocessing, histopathological images, oral squamous cell carcinoma}, journal = {Cancers}, doi = {10.3390/cancers13081784}, volume = {13}, number = {8}, issn = {2072-6694}, title = {An Enhanced Histopathology Analysis: An AI- Based System for Multiclass Grading of Oral Squamous Cell Carcinoma and Segmenting of Epithelial and Stromal Tissue}, keyword = {AI-based system, data preprocessing, histopathological images, oral squamous cell carcinoma} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font