Pregled bibliografske jedinice broj: 1123370
An Enhanced Histopathology Analysis: An AI- Based System for Multiclass Grading of Oral Squamous Cell Carcinoma and Segmenting of Epithelial and Stromal Tissue
An Enhanced Histopathology Analysis: An AI- Based System for Multiclass Grading of Oral Squamous Cell Carcinoma and Segmenting of Epithelial and Stromal Tissue // Cancers, 13 (2021), 8; 1-21 doi:10.3390/cancers13081784 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1123370 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
An Enhanced Histopathology Analysis: An AI-
Based System for Multiclass Grading of Oral
Squamous Cell Carcinoma and Segmenting of
Epithelial and Stromal Tissue
Autori
Musulin, Jelena ; Štifanić, Daniel ; Zulijani, Ana ; Ćabov, Tomislav ; Dekanić, Andrea ; Car, Zlatan
Izvornik
Cancers (2072-6694) 13
(2021), 8;
1-21
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
AI-based system ; data preprocessing ; histopathological images ; oral squamous cell carcinoma
Sažetak
Oral squamous cell carcinoma is most frequent histological neoplasm of head and neck cancers, and although it is localized in a region that is accessible to see and can be detected very early, this usually does not occur. The standard procedure for the diagnosis of oral cancer is based on histopathological examination, however, the main problem in this kind of procedure is tumor heterogeneity where a subjective component of the examination could directly impact patient- specific treatment intervention. For this reason, artificial intelligence (AI) algorithms are widely used as computational aid in the diagnosis for classification and segmentation of tumors, in order to reduce inter- and intra-observer variability. In this research, a two-stage AI- based system for automatic multiclass grading (the first stage) and segmentation of the epithelial and stromal tissue (the second stage) from oral histopathological images is proposed in order to assist the clinician in oral squamous cell carcinoma diagnosis. The integration of Xception and SWT resulted in the highest classification value of 0.963 (σ = 0.042) AUCmacro and 0.966 (σ = 0.027) AUCmicro while using DeepLabv3+ along with Xception_65 as backbone and data preprocessing, semantic segmentation prediction resulted in 0.878 (σ = 0.027) mIOU and 0.955 (σ = 0.014) F1 score. Obtained results reveal that the proposed AI- based system has great potential in the diagnosis of OSCC.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Temeljne tehničke znanosti, Temeljne medicinske znanosti, Kliničke medicinske znanosti
POVEZANOST RADA
Projekti:
Ostalo-CEI - 305.6019-20 - Use of regressive artificial intelligence (AI) and machine learning (ML) methods in modelling of COVID-19 spread (COVIDAi) (Car, Zlatan, Ostalo - CEI Extraordinary Call for Proposals 2020) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
InoUstZnVO-CIII-HR-0108-10 - Concurrent Product and Technology Development - Teaching, Research and Implementation of Joint Programs Oriented in Production and Industrial Engineering (Car, Zlatan, InoUstZnVO - CEEPUS) ( CroRIS)
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
Ustanove:
Medicinski fakultet, Rijeka,
Tehnički fakultet, Rijeka,
Klinički bolnički centar Rijeka,
Fakultet dentalne medicine, Rijeka
Profili:
Zlatan Car
(autor)
Jelena Musulin
(autor)
Ana Zulijani
(autor)
Tomislav Ćabov
(autor)
Daniel Štifanić
(autor)
Andrea Dekanić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus