UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 2251

MICROBE DETECTION USING DEEP LEARNING

Mirna Baksa

Zagreb, June 2020



UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 2251

MICROBE DETECTION USING DEEP LEARNING

Mirna Baksa

Zagreb, June 2020



UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Zagreb, 13 March 2020

MASTER THESIS ASSIGNMENT No. 2251

Student: Mirna Baksa (0036491078)

Study: Computing

Profile: Computer Science

Mentor: prof. Mile Siki¢

Title: Microbe Detection Using Deep Learning
Description:

Microbes are omnipresent organisms that are not possible to be seen by naked eye. The term includes many
types of microorganisms, such as bacteria, viruses, fungi, etc. They affect and interact with humans in
multiple ways - food production and digestion, immune system, and many other functions in the body. It is
essential to be able to detect and classify them to discover diseases, prescribe medication, and keep a
healthy lifestyle. The goal of this work is to detect microbe corresponding with the given sequenced DNA
fragments by using a suitable representation of a sequenced signal. After finding a signal representation, the
goal is to find an appropriate distance metric to separate different species in the latent space properly. In the
end, reads will be classified using a classifier like k-NN. Develop a method for microbe detection based on a
deep learning architecture. For evaluation of results, use a publicly available dataset, such as Zymo mock
community dataset. The solution should be implemented in Python with the PyTorch or similar computational
library. The source code should be documented using comments and should follow the Google Python Style
Guide when possible. The complete application should be hosted on GitHub under an OSI approved license.

Submission date: 30 June 2020



SVEUCILISTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE | RACUNARSTVA

Zagreb, 13. ozujka 2020.

DIPLOMSKI ZADATAK br. 2251

Pristupnica: Mirna Baksa (0036491078)

Studij: Racunarstvo

Profil: Racunarska znanost

Mentor: prof. dr. sc. Mile Siki¢

Zadatak: Prepoznavanje mikroba uporabom dubokog ucenja
Opis zadatka:

Mikrobi su sveprisutni, golim okom nevidljivi organizmi. Pod pojmom mikrob podrazumijevaju se mnoge vrste
mikroorganizama poput bakterija, virusa, gljivica, itd. Oni utjeCu i medudjeluju s ljudima na viSe nacina - u
proizvodniji i razgradnji hrane, kod imunoloskog sustava i kod mnogo drugih funkcija u ljudskom organizmu.
Stroga, vazno je moci prepoznati i klasificirati mikrobe kako bi otkrili bolesti, prepisali lije¢enje i zadrzali zdrav
nacin Zivota. Cilj ovoga rada je prepoznavanje mikroba za dani o€itani DNA fragment koriste¢i odgovarajucu
reprezentaciju ocitanog signala. Nakon reprezentacije signala, cilj je pronaéi odgovarajuc¢u metriku kako bi u
latentnom prostoru uspjeSno razdvojili razliCite mikrobe. U konacnici, ocitanja klasificirati koristedi
klasifikacijski model, npr. k-NN. Zadatak je razviti metodu za otkrivanje mikroba koriste¢i metode dubokog
uCenja. Za evaluaciju moze se koristiti neki javno dostupni skup podataka, primjerice Zymo mock community
skup podataka. RjeSenje je potrebno implementirati u programskom jeziku Python koriste¢i PyTorch ili sli€nu
biblioteku za matri€ni izracun. lzvorni kod je potrebno dokumentirati koriste¢i komentare i razvijati prema
Google Python Style Guide kada je to moguce. Cijeli programski proizvod potrebno je postaviti na GitHub
pod jednu od OSI odabranih licence.

Rok za predaju rada: 30. lipnja 2020.



I would like to express my sincere gratitude to my mentor Mile Siki¢ for his
constant motivation, extensive guidance and opportunities given throughout my entire

university experience.
An additional thank you to Dominik Stanojevic for his help with this thesis.

Last, but not least, I thank my family and friends for their unconditional love,

support and encouragement, without which my success would not have been possible.

il



CONTENTS

1. Introduction

2. Dataset
2.1. Preprocessing . . . . . . . ... ..
2.1.1. Raw Signals . . ... ... ... .. ... ... .. ...
2.1.2. Reducing dimensionality . . . . . . ... ... ... .....
2.1.3. Normalization . ... ... .. ... .. ... ........
214, Summary . . . ...
2.2. Zymo mock community dataset. . . . . ... ... ... ...
3. Methods
3.1, OVerview . . . . .. e e e e e e e e e
3.1.1. Artificial Neural Networks . . . . . .. ... ... ......
3.1.2. Convolutional Neural Networks . . . . .. ... ... ....
3.1.3. Recurrent Neural Networks . . . ... ... .........
3.1.4. Long Short-Term Memory Networks . . . . ... ... ...
32. Models . . . . . .. . e
3.2.1. Autoencoders . . . . . .. ...
3.2.2. Tripletnetworks . . . .. ... . ... ... ... ... ..
3.3. Visualization . . . . . .. ...
3.4. Classification . . . . . . . . . . ... .. e
3.5. Technical Stack . . . . . ... ... ... ... ... .. ...
4. Results
4.1. Autoencoders . . . . . .. ..
4.1.1. Convolutional Autoencoder . . . ... ... ... ......
4.1.2. LSTM Autoencoders . . . . . ... ... ... .. ......
4.1.3. Autoencoder Performance Summary . . . . . . ... ... ..

®w o 9 AN A~ B~ W

10
10
11
13
14
15
17
17
22
23
24
25

27
29
30
35
40

Y



4.2. Triplet Networks . . . . . . . . . .. ...

4.2.1.
4.2.2.
4.2.3.
4.2.4.

5. Evaluation

Convolutional Triplet Network . . . . . . .. ... ... ...
LSTM Triplet Network . . . . . . ... .. ... ... ....
Further Experiments . . . . . . ... ... ... .......

Triplet Networks Performance Summary . . . ... ... ..

5.1. Results on the Zymo mock community dataset . . . . . .. ... ...

5.2, DISCUSSION . . . . .« o v i e

6. Conclusion
Bibliography
List of Figures

List of Tables

56
56
58

59

61

63

66



1. Introduction

Microbes are microscopic organisms composed of either a single cell, multiple cells or
cell clusters. The most common types include viruses, bacteria, protozoa, and fungi.

These microorganisms live in almost every part of the biosphere: in the soil, deserts,
the ocean floor, high in the atmosphere, and deep within the Earth, thus adapting to
most conditions - including extremes such as very high or cold temperatures, high
pressure or even high radiation environments.

Microbes interact with human culture in many ways. The human body is home
to millions of microorganisms in the normal body flora, but some microbes are also
pathogens responsible for infectious diseases. Outside of the body, microbes are a
contributor to treating sewage, producing enzymes and fuel, fermenting various foods
(e.g. beer or wine), and much more.

Studying microbial genomes helps to better understand their biological compo-
nents and how their genetic configuration contributes to their distinct characteristics.
The field of microbial genetics has advanced tremendously with DNA sequencing, the
process of determining the order of nucleotides in a DNA fragment. First proposed by
Frederick Sanger in 1977, sequencing technology has since gone through many itera-
tions of improvement, where the ideal sequencer would be highly accurate, with long
read length (no gaps in the genome), low cost, and high throughput.

Nanopore sequencing is a third generation sequencing technology promising very
long reads, high throughput, and low material requirement. A nanopore is essentially
a very small (<Inm in width) hole through which DNA strands are driven by elec-
trophoresis. As each base molecule is driven through the nanopore, it induces a differ-
ent change in current which is then used to identify that particular molecule. These raw
current signals outputted by the sequencer are the target of this work. The challenge is
that the DNA strands move very rapidly through the nanopore which makes the signals
prone to background noise.

Working with sequences, such as the raw nanopore signals, is one of the harder

challenges in machine learning and data science industries. Real-life sequences are un-



predictable, containing complex temporal dependencies, where genomes as sequences
are particularly complicated in their nature. When considering the added noise, one
can easily see why this problem is especially hard. Another thing to keep in mind that
a DNA strand is formed by only four types of nucleotides whose order is what deter-
mines the genetic code, so there is not much diversity in the type of molecule passing
through the nanopore and thus inducing a change in current.

The goal of this thesis is to research different methods for finding a compressed sig-
nal representation for a DNA fragment of a microbe. The compressed representation
should contain the most important features of the fragment so that different microbial
species can be distinguished according to their representations. The end objective is
to be able to cluster different DNA fragment signals according to their species and
therefore be able to easily classify a new, unseen, and unknown DNA fragment. If
the method is good enough, the compressed representations could be used for differ-
ent purposes as they would contain the most important information from the genome,
while being easier to work with because of their reduced dimensionality.

In this thesis, chapter 2 gives an introduction to the dataset and the preprocessing
flow. Chapter 3 will give a theoretical overview of methods and architectures used
in this work, then introduce the exact models used, visualization and classification
techniques, and lastly a brief description of the technical stack. Chapter 4 presents and
discusses the results. Chapter 5 discusses the evaluation on true data, with a conclusion

in chapter 6.



2. Dataset

The starting point for this work are genomes from 6 different species:

e Escherichia coli

e Bacillus anthracis

Klebsiella pneumoniae

Pantonea agglomerans
o Pseudomonas koreensis

e Yersinia pestis

Original genome lengths are shown in table 2.1. During nanopore sequencing, each
nucleotide in the genome produces some change in current so the raw signal is even

longer.

Table 2.1: Original Genome Lengths

Species Total Length (bp)
Escherichia coli 4,641,652
Bacillus anthracis 5,227,293
Klebsiella pneumoniae 5,682,322
Pantonea agglomerans 5,115,241
Pseudomonas koreensis 6,301,761
Yersinia pestis 4,829,855

These reference genomes are long, complex, and very similar to each other. The
similarity between genomes is higher when organisms are closer in a phylogenetic tree.
The actual similarity of prokaryotic genomes can be calculated using the Average Nu-
cleotide Identity (ANI) score. Given two genomes, the ANI score estimates nucleotide

identity between their coding regions. For example, ANI score > 95% is usually a



boundary for same species genomes. ANI scores calculated with ORTHOAni (Lee

et al. (2016)) !, are shown in table 2.2.

Table 2.2: Average Nucleotide Identity scores

Bacillus
62.2472%
anthracis
Klebsiella
78.3507% | 61.9479%
pneumoniae
Pantonea
73.4330% | 61.7770% | 74.0607%
agglomerans
Pseudomonas
66.4474% | 62.5534% | 67.3194% 66.5931%
koreensis
Yersinia
71.1529% | 62.885% 72.2456% 71.7984% 65.2331%
pestis
Escherichia | Bacillus Klebsiella Pantonea | Pseudomonas
coli anthracis | pneumoniae | agglomerans koreensis
2.1. Preprocessing

Each reference genome is split into smaller sections, each containing around 10k nu-
cleotides. The sections are generated using a sliding window with an offset of 1000.
The sliding window concept (on a smaller scale). is shown in figure 2.1 .

Using this technique, for a genome of approximately 5 million base pairs long
around 5k sections are generated. Once the sections are generated, they are trans-
formed into raw electrical current signals using DeepSimulator.

This process is reversed from what happens in practice, where raw nanopore signals

are the starting point, but this is a way of generating an artificial dataset to work on.

2.1.1. Raw Signals

A tool called DeepSimulator by Li et al. (2018) is used to reproduce the raw current
signals. While most existing simulators simulate the reads based on statistical patterns

of data, DeepSimulator imitates the flow of the nanopore sequencing procedure.

"https://www.ezbiocloud.net/tools/orthoani



[ 10 )
—

... ATCGTTCGTACAATGGCACACGTTGACGTGACGATATCGATGACTGCAGTCCTCAGA...

|

ATCGTTCGTACAATGGCACACGTTG

|

ACGTTGACGTGACGATATCGATGAC

Figure 2.1: Sliding window concept with window length 25 and offset 10

Taking in a reference genome, DeepSimulator generates raw electrical current sig-
nals using a context-dependent deep learning model. Simulated reads are yielded by
base-calling.

To generate a signal, the user needs to provide a reference genome and specify
either the number of reads or the coverage. The sequence is preprocessed before going
into the signal generation model. The signal generation model generates the expected
electrical signal of a particular k-mer (usually 5-mer or 6-mer).

In terms of this work, DeepSimulator with default parameters is used to simulate
the raw current signals. Reads generated by DeepSimulators default parameters are
bound to have almost exact characteristics as the actual data.

A sample output (the first 1000 signal timesteps) is shown in figure 2.2.

7001

"‘l' "H.\ \\l ““ [ o0 ‘W l

‘ all M|
* “ w M"»JN“V “‘

2
=]

w
o
1=}

[ W

current (pa)

&
=
[=

x

w
ey
=

timestep

Figure 2.2: Example of the first 1000 timesteps of a signal generated by DeepSimulator

1000



2.1.2. Reducing dimensionality

After retrieving the signals from DeepSimulator, the dimensionality of data is large. To
reduce, the input samples are split again into fragments of 400 timesteps (of the raw
signal) which is equivalent to 40-50 base pairs of the reference genome. This division
is arbitrary - fragment length is chosen so that the end result is as representative as
possible, but of lower dimensionality.

The fragment of length 400 is then represented by 4 different statistical coefficients:

2 measures of central tendency - the mean and the median:

1 & T+ 20+ -+,
M == e 2.1
ean nzzlx 2.1)

n

N+1 th .
%t@rm; when n is even,

Median = <
2

(2.2)

term+( 5 +1)*" term
2

; when n is odd

and 2 measures of variability - the standard deviation and the interquartile range:

N
1

Deviation = |~y (a; — &)? 2.

Standard Deviation N1 (x; — T) (2.3)

i=1

N+1 N—+1
Interquartile Range = Q3 — Q = 3(T+)th term — (T+)th term (2.4)

This way, a fragment of the sample of length 400 is mapped to 4 statistics, so the
starting input sample goes from shape (timesteps, 1) to (timesteps/400,4).

The dimensionality of the dataset is thus significantly reduced while the 4 descrip-
tive statistics coefficients hopefully still retain enough information about the features
of the signal.

The pipeline for 20k timesteps can be seen in figures 3.1 and 2.4.

This dataset is split evenly between the training/validation/test in the ratio 80% /
10% /10 %.



(a) Example of a raw signal (b) Example of a raw signal scaled to (0, 1)

Figure 2.3: Raw signal example

(c) Standard Deviations of the preprocessed signal (d) Interquartile Ranges of the preprocessed signal

Figure 2.4: Preprocessed signal example. A raw signal is first split into fragments of 400
timesteps which are then each mapped to 4 statistics - mean, median, standard deviation, in-

terquartile range.

2.1.3. Normalization

The final step is normalizing the inputs. Each of the datasets (train, validation, and
test) is normalized separately so as not to introduce any bias from the training set into
the validation and test sets.

The inputs are in shape

meang mediang stdevy iqry
mean, median; stdevy iqrq
Tr = (2.5

mean,, median, stdev, iqr,

Normalizing by standard score is done by calculating the mean p and standard de-
viation o of every column of every input sample - the mean of all means, the standard
deviation of all means; the mean of all medians, the standard deviation of all medians
etc.

Normalization is then done as



/ T — Weolumn

r=— (2.6)

O column

where 7’ is the normalized value of original value z.
Another way of normalizing is by min-max scaling, calculating the max and min
of each column and computing
T — T
r=——"" (2.7)
Tmaz — Tmin

Both of these ways are used in this work, each for an appropriate network imple-

mentation.

2.1.4. Summary

To sum up, table 2.3 shows the total number of input samples for each class in the

dataset and the percentage of samples belonging to that class.

Table 2.3: Sample distribution through classes

Species Total samples | Percentage in dataset
ecoli 4632 14.64%
bacillus anthracis 5218 16.49%
klebsiella pneumoniae 5636 17.81%
pantonea agglomerans 5078 16.04 %
pseudomonas koreensis 6292 19.88 %
yersinia pestis 4792 15.14 %

The ideal case would be 16.67% (%) of samples for each class which would mean
a perfectly balanced dataset. This dataset is not exactly perfectly balanced, but is quite

close to it - no class deviates from the 16.67% for more than 3%.

2.2. Zymo mock community dataset

Once a successful architecture is found, it will be evaluated on actual signal data from

the Zymo mock community publicly available dataset’ by Loman et al. (2018).

The ZymoBIOMICS Microbial Community Standard is the first commercially avail
able standard for studies in metagenomics and microbiomics. Mock community stan-
dards are useful for the development and validation of not just laboratory but software

and bioinformatics methods as well.

Zhttps://github.com/LomanLab/mockcommunity



This particular community consists of ten microbial species: eight equally dis-
tributed bacteria (12% each): Escherichia coli, Pseudomonas aeruginosa, Salmonella
enterica, Enterococcus faecalis, Lactobacillus fermentum, Staphylococcus aureus, Lis-
teria monocytogenes and Bacillus subtilis; and two yeasts (each present at 2%): Sac-
charomyces cerevisiae and Cryptococcus neoformans.

The whole dataset consists of:

o 4.23M reads
e 16.59Gb bases
e 4.620bp read length N50.

Since the dimensionality of this raw signal dataset is very large, the evaluation
in the scope of this work will be done on a smaller, manageable part of that dataset.
The dataset is originally given in 43 batches but only reads from the first batch are
processed (around 200k reads).

Similar to many metagenomic samples, the exact species is unknown at the time of
sequencing, meaning that the raw signals from the dataset are not assigned to a specific
class. This posed a new problem since this work requires labelled data.

To mend this problem, Kraken 2 (Wood et al. (2019)) was used as a taxonomic
sequence classification system. Kraken 2 is an improved version of Kraken (originally
presented by Wood and Salzberg (2014)). The classifier maps original k-mers within
the reference to the lowest common ancestor, or LCA, in all existing genomes contain-
ing that particular k-mer. Along with the sequenced Zymo dataset, a Kraken microbial
community database was published publicly as well®. This database was used to clas-
sify the base-called reads which were then cross-referenced with signal files to get
a dataset of classified raw signals. The process is not exact and probably not 100%
accurate since the Kraken and cross-referencing pipeline introduces some space for
unintentional error.

Raw signals from 6 of the 10 species (to match the artificial dataset) were prepro-
cessed in the same manner as the artificial dataset, with 4000 reads chosen from each
species - giving in total 24 000 reads to process.

The evaluation on a smaller scale dataset is still not a real-life scenario but will give

some indication on how well the developed model works.

3https://lomanlab.github.io/mockcommunity/mc_databases.html



3. Methods

3.1. Overview

The main objective of this work is to research an appropriate deep architecture that
could generate a compressed representation (encoding) of a given signal. The represen-
tation should be such that different species can be segregated by their representations.

The basic pipeline of this work is shown in figure 3.1.

preprocessing

visualisation

tSNE
< (_representations

l

classifier

l

class

Figure 3.1: Scheme of the work pipeline. Raw signals go through a preprocessing stage before
they are fed into a model. The model learns signal representations, which are visualized with

tSNE and classified to a microbial species.

After the preprocessing stage described in section 2.1, the signals are fed into the

10



chosen model. An overview of the models used is shown in figure 3.2.

MODELS

[ Autoencoders ] [ Triplet Networks ]

— Convolutional

Undercomplete

— LSTM

Figure 3.2: Overview of models used in this work

Variational

After training the model, the signals are visualized. The first indicator of the effi-
ciency of the model is how well the representations of different classes are clustered
together. A more concrete metric is given by the classifier which is the last step of the
pipeline.

The remainder of this section is a brief overview of each type of architecture used

and how it can be adjusted to the problem at hand.

3.1.1. Artificial Neural Networks

Artificial Neural Networks (ANNSs) are computational networks inspired by biology,
built of interconnected units called neurons. ANNs are capable of learning non-linear
functions, thus called universal function approximators.

Neural networks comprise three layers: the input layer, hidden layers (one or
more), and an output layer. A neural network consisting of one hidden layer is il-
lustrated in figure 3.3.

The network weights are updated by the backpropagation algorithm which com-
putes the gradient of a pre-determined loss function in relation to the network weights
for an input-output sample (or a batch of samples). The gradient is calculated using the

chain rule, calculating layer by layer, starting from the last one. The network learns

11



inputs —> output

Input Layer R2 Hidden Layer R* Output Layer R?

backpropagation

Figure 3.3: Simple Artificial Neural Network architecture with an input layer, one hidden layer

and an output layer

by updating its weights according to the calculated gradient, which is a measure of the
change in weights compared to the change in error.

Problems that emerge in deep (with more layers) neural networks are the exploding
and vanishing gradient problems. As already mentioned, the gradient has a direct
effect on how well the network is learning.

In some cases this gradient is small - many traditional network activation func-
tions (functions that define the output of a given node) have gradients € (0,1). When
applying the chain rule on an n-layer network, a small gradient will result in effec-
tively multiplying » small numbers to calculate the gradients of the front layers. This
causes the gradient to decrease exponentially with n, which has a negative effect on the
training of the front layers of the network. This is the so-called vanishing gradient
problem.

A demonstration of the problem can be seen in figure 3.4. The figure shows the ef-
fect of applying a sigmoid activation function multiple times. The function is flattened
until it has no slope, which is equivalent to a gradient vanishing when passed through
multiple layers.

On the other hand, the exploding gradient problem occurs when activation func-
tion gradients take on larger values. In that case gradients accumulate quickly which

results in an unstable network.

12



1L0) — single sigmoid

—— double sigmoid
triple sigmoid

0.8 . .
—— quadruple sigmoid

0.6

0.4

0.2

0.0

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5

Figure 3.4: Effect of applying the sigmoid activation function multiple times

3.1.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are specialized for processing data with grid-
like topology. The most common use cases are for image processing seeing that images
are essentially 2D grids of pixels, but they are also used in time-series data which can
be presented as a 1D grid.

Where other neural networks use regular matrix multiplication, CNNs employ an

operation called convolution:
s(t) = (z * w)(t) (3.1)

In CNN terminology, the x is often referred to as the input, w as the kernel and
the output as the feature map.

Although colloquially referred to as convolutions, CNNs technically actually em-
ploy a cross-correlation (a sliding dot product). Its effect on a 1D grid is shown in
figure 3.5.

The intention of the convolution operation is to extract high-level features from the
input.

Fully connected neural networks are able extract some features as well, but only
with a very large amount of neurons. This is because of the matrix multiplication
in fully connected neural networks where every output unit interacts with the input.
The convolution operation mends this problem - computing the output requires fewer
operations, the model has to store fewer parameters which both reduces the memory

usage of the model and improves its efficiency.

13



kernel of size 5

J

W1|W2 | W3 W4| WS

X1 |x2 [x3 | x4 [x5 | x6 | x7 | x8 | ... Xn input
features
weighted dot
product

C4= W1*X4+W2*X5...+W5*Xx8

output

= features

Figure 3.5: Cross-correlation (convolution) applied to a 1D grid

3.1.3. Recurrent Neural Networks

The problem with simple ANNs and sequential data is that their architecture is such
that they can not capture temporal information in data and therefore underperform
when dealing with sequences.

An improvement on simple artificial neural networks are recurrent neural networks
which are designed to be able to capture dependencies in sequential data. Recurrent
networks take as input the current input example, and additionally their outputs from
previous inputs by a feedback loop, as in figure 3.6. Therefore, recurrent networks
have two input sources: the present and the recent past.

Because of their architecture, recurrent networks are often characterized to have

memory, mathematically described as
ht = Q(W.Tt + Uht—l) (32)

Memory helps in dealing with sequences - information about the sequence gets

preserved in the hidden state of the recurrent network.

14



® 060
U
_— — — o —( ha )— Mt )
unfold
ONNONO

Figure 3.6: Recurrent Neural Network architecture

RNNs are not immune to the vanishing and exploding gradient problems. Since
recurrent networks seek correlation between points many timesteps apart, a vanishing
gradient will make that impossible for complex problems. It can be said that RNNs
suffer from short-term memory - if a sequence is long enough, a RNN will struggle

with carrying information from early steps to later ones.

3.1.4. Long Short-Term Memory Networks

Long Short-Term Memory, (LSTM) Networks were proposed by Hochreiter and Schmid-
huber (1997) and are a subtype of recurrent neural networks. LSTMs were developed
as a solution to the already described vanishing gradient problem.

LSTM networks proved to perform better than conventional feed-forward neural
networks and RNNs for processing time-series data where there can be a delay be-
tween important events in the sequence. Some applications include machine transla-
tion, speech recognition, future prediction (e.g. predicting stock prices), etc.

In terms of the vanishing gradient problem, LSTMs help maintain constant error
and preserve backpropagated error through time and layers. This is done by storing
information in a gated cell as shown in figure 4.24.

The LSTM gated cell learns when to allow changes of the cell state through gates
that control the information flow. The gates filter information with their own set of
weights which are adjusted during the learning procedure through gradient descent,
just like any other weight in a neural network. When the cell makes a decision about
what needs to be learned it effectively decides which parts of a sequence are important
to remember when processing a long chain of sequences.

Formally, each LSTM cell will compute the following for each element in the input

15



cell state

>
forget °
ft i

gate
i ht
A\ S/ L J

Xt

input gate output gate
sigmoid tanh

Figure 3.7: LSTM cell scheme

sequence:

i = O(Wixy + by + Whiihy—1 + by;)
fr = 0(Wisxy + bis + Wiphi—1 + bpy)
g1 = tanh(Wgxy + big + Wighi—1 + byy)
o = 0(Wioxy + bio + Whohi—1 + bpo)
a=LO0cq 1+, 0q
hi =0y ® TanH (c;)

(3.3)

where h, is the hidden state at the final moment ¢, ¢, is the cell state at ¢, x; is the
input at ¢, h,_; is the layer hidden state at £ — 1 or the initial hidden state at 0, b is
the bias and iy, f;, g;, 0, are the input, forget, cell and output gates. ¢ is the sigmoid
function and © represents the Hadamard product.

The key advantage of LSTM units over traditional RNN neurons is that LSTMs
sum activities over time, which means that the derivative will not vanish as quickly

and long-range features are easier to discover.

Bidirectional LSTMs

An extension to the traditional RNN is the bidirectional RNN proposed by Schuster
and Paliwal (1997). This idea has been used extensively on LSTMs.

16



Bidirectional LSTM Networks train two instead of one LSTM on the input se-
quence. The first LSTM input is the sequence as-is, while the second LSTM gets
a time-reversed replica of the input sequence. By doing this, the network has more
context on the given sequence.

The simplest example is speech - sounds, words and sentences can at first mean
nothing, but as future context is provided they start to make sense. Bidirectional RNNs
and LSTMs do exactly that - provide both current and future context. Although for
some problems using a bidirectional network may not be suitable (e.g. online learning
where one requires an output after every input), in others they do offer some benefits

and improve performance.

3.2. Models

3.2.1. Autoencoders

An autoencoder is a neural network whose objective is to learn data encodings. The au-
toencoder architecture is designed so that it imposes a bottleneck in the network which
encourages it to extract meaningful features and produce a compressed representation
of the input.

The general structure of an autoencoder network is presented in figure 3.8.

original reconstructed
- — — .
input encoder decoder input

compressed
representation

Figure 3.8: Autoencoder architecture, consisting of an encoder which learns compressed rep-

resentations, and a decoder which learns to map the representation back to the original output

Two main parts of an autoencoder are the encoder and the decoder. The encoder
learns how to reduce the input dimensions and encodes the input data into a com-
pressed representation. This can be expressed as a function h = f(x), where h is the
previously mentioned bottleneck in the network - the compressed representation. The
decoder then tries to reconstruct the data from the compressed representation, or math-
ematically » = g(h). What needs to be avoided is an autoencoder simply learning to
set g(f(z)) = x which is not very useful.

Autoencoders are usually optimized by minimizing the reconstruction loss

17



L(in,out) = L(z, g(f(x)) (3.4)

which calculates the difference between input and its reconstruction. Such losses

are e.g. the mean absolute error (also called LL1) or the mean squared error:

1 < 1«
MAE = —Z led] = — Z ling — out|

[ g

1 n ) 1 n ‘ ) (35)
MSE = ﬁtzlet = EZ(mt — outy)

t=1

The basic architecture is as shown in figure 3.8, but the actual implementation
can vary depending on the use case. An autoencoder could be a simple feed-forward
network, a convolutional network, an LSTM, etc.

Autoencoders are usually restricted to reconstruct the input approximately in order
not to directly duplicate the input signal. This ensures that the compressed encoding

retains only the most significant features of the given data.

Undercomplete autoencoders

The simplest way of preventing the autoencoder to repeat the input as the output is by
constraining the dimensions of the network bottleneck - i.e. constraining the dimension
of the encoding to be less than the dimension of input data.

Unfortunately, in some cases this is still not enough and an autoencoder with
enough capability will be able to learn an identity function. As described by Good-
fellow et al. (2016), one could in theory imagine a powerful autoencoder with a one-
dimensional code where the encoder could learn to represent a training sample z; with
the code 7. A decoder could then learn to map those integers back to specific training
examples. Although this most likely will not happen in practice, it is a good illustration

of an autoencoder failing to learn anything useful from the data.

Denoising autoencoders

The basic idea of denoising autoencoders is to train a network which extracts useful
information by changing the reconstruction error.

As already mentioned, autoencoders minimize the function

Lz, g(f(x))) (3.6)

18



where L is a loss function punishing ¢(f(x)) when different from z. A denoising

autoencoder on the other hand will minimize

L(x,9(f(2)) 3.7)

where & is a copy of x corrupted by noise.

The noise forces the autoencoder to remove the corruption instead of copying the
input. As shown by Alain and Bengio (2012), a denoising autoencoder with small
noise corruption can aid in f and g successfully learning the actual structure of the
data.

Variational autoencoders

A variational autoencoder (VAE), Kingma and Welling (2013) and Jimenez Rezende
et al. (2014), is an autoencoder with additional constraints on the encoded representa-
tions.

More precisely, instead of learning arbitrary encoding functions, variational au-
toencoders optimize the parameters of a distribution which models the input. This fact
makes a variational autoencoder a generative model - when the autoencoder learns a

probability distribution of some data, points can be sampled from that distribution.

Statistical motivation

Let there exist a hidden variable z which generates an observation x as in figure 3.9.

Figure 3.9: Hidden variable z generating an observation x

The aim is to infer z (in this case, the latent representation of x) by only knowing

Introducing the Bayes Rule:

(3.8)

19



where p(z|x) is the posterior distribution over z, p(z|z) is the likelihood function of
z and p(z) is the prior probability of z. Computing the posterior distribution is known
as the inference problem.

The problem is that

ple) = / p(al)p(z)dz (3.9)

can be very high-dimensional and difficult to compute. To estimate this value,
p(z|z) can be approximated with another distribution ¢(z|x) such that its distribution
is tractable. As shown in figure 3.10, the observations will be used to estimate the
hidden variable. If the parameters of ¢(z|x) are very similar to p(z|x), ¢ can be used

to approximately infer the intractable distribution p.

()

A
P(X|Z)l a2

a

Figure 3.10: Using known observations z to estimate the hidden variable z

The autoencoder will now look as in figure 3.11

X — q(zIx) —z |— p(x|z) —X

Figure 3.11: Variational Autoencoder architecture: p(z|z) is approximated with a distribution

q(z|x)

To measure the difference between p and ¢, Kullback-Leibler divergence (also
called relative entropy) is used. Kullback-Leibler divergence (KL) is a measure of how

one probability distribution is different from another, computed as

20



[e.e]

Da(PIQ) = [ ota) 1og<%>dx (3.10)

The model is trained using a loss function that is a sum of two functions: the usual
reconstruction loss and the Kullback—Leibler divergence. Conceptually, this means
that one term of the loss will penalize the usual reconstruction error, while the sec-
ond term will encourage the distribution ¢(z|x) to be as close as possible to the prior

distribution p(z), for which the Gaussian distribution is assumed.

L(z,2')+ ZKL (g;(2]2)]] p(2)) G.11)

J

To implement the statistical motivation, the variational autoencoder conceptually

will be as shown in figure 3.12.

sample from
mean distributions

T,
x—— | q(z) | i)

- o /

variance

Figure 3.12: Variational Autoencoder implementation: encoder maps the input into i and ¢ in

latent space. A similar point z is sampled from N (u, o), and fed to the decoder

In a concrete implementation, an encoder maps each input sample x into two pa-
rameters in latent space - mean value p and variance o. These vectors define the multi-
variate normal distribution around the input point. Then, a similar point z is randomly
sampled from that distribution and returned as the latent variable. Finally, a decoder
network is used to map these latent variables to original data.

The above-described pipeline makes sure that the network learns a smoother repre-
sentation - a small change in the latent variable will not cause the decoder to produce
a largely different output because the points are sampled from the same continuous

distribution.

Reparametrization trick

In their original form, variational autoencoders sample from

2z~ N(p, o) (3.12)

21




The sampling process is random. When training a model by backpropagation, the
relationship of each network parameter to the network output needs to be calculated
which can not be done for a randomly sampled parameter.

To solve this problem, the reparametrization trick suggests to introduce a new
parameter ¢, randomly sampled from a unit Gaussian ~ N (0, 1). ¢ is then shifted by
the latent distribution mean x and scaled by the latent distribution variance o. The trick
is shown in figure 3.13.

The reparametrization trick enables random sampling from the latent distribution,

while still being able to infer the actual distribution parameters.

decoder decoder
deterministic T T
reparametrization
O~ @ Oy

PAR SN

¥ o o0~
T

T

encoder encoder

Figure 3.13: The effect of the reparametrization trick on random sampling: introducing a new

parameter € randomly sampled from a unit Gaussian enables random sampling of z

3.2.2. Triplet networks

The triplet concept, first proposed by Hoffer and Ailon (2014) is a way to perform un-

supervised feature learning. Although not another neural network architecture (rather

a way of training), this concept can be leveraged to retrieve encoded representations.
A triplet network is a neural network of arbitrary architecture (i.e. convolutional,

LSTM...) trained using triplets (x, ™, ™) such that

e x is an arbitrary anchor sample
e x T is a positive sample semantically similar to x (i.e. same class as )

e x~ is a negative sample semantically dissimilar to z (i.e. different class than
)

The network is trained to minimize the loss defined as

22



L = max(d(anchor, positive) — d(anchor, negative) + margin,0)  (3.13)

which pushes d(anchor, positive) to 0, and d(anchor, negative) to be greater than
d(anchor, positive) + margin, where d(p, q) is an arbitrary measure of distance. The
goal is to push positive examples to be closer to the anchor and negative examples

further from it, as presented in figure 3.14.

@ @
@ e @ ~

Figure 3.14: Triplet learning: positive samples are pushed closer to the anchor and negative

samples further from it

Triplet networks were popularized further by Google’s FaceNet (Schroff et al.
(2015)) where triplet loss was used to learn an embedding space for face images.

The application of triplet networks to this work is simple - the input samples pass
through the network and the loss will minimize the distance between embeddings of
the same class (anchor embedding and positive embedding), and maximize the dis-
tance between embeddings of the opposite class (anchor embedding and negative em-
bedding).

*C = maw(d(embanchora embpositive) - d<€mbancho7“7 Gmbnegative) + ma?"gm, 0)
(3.14)

The distance measure used is a simple Euclidean distance.

(3.15)

3.3. Visualization

For visualization, the T-distributed Stochastic Neighbor Embedding (t-SNE) algo-
rithm is used. Developed by Van der Maaten and Hinton (2008), this technique is
especially suitable for high-dimensional data visualization.

The way this algorithm works is that it minimizes the divergence between two dis-

tributions: the distribution of pairwise similarities of the inputs and the distribution of

23



pairwise similarities of corresponding low-dimensional embedding points. Essentially,
the algorithm tries to represent high-dimensional data by using fewer dimensions while
still matching both distributions.

Clusters given by t-SNE plots can be misleading, depending heavily on the chosen
algorithm parametrization. Nonetheless, in this work t-SNE is used simply as a visual
aid - concrete metrics are calculated on the original embeddings.

All of the result images in chapter 4 are generated using t-SNE.

3.4. C(lassification

Once suitable signal representations exist, a method for their successful classification

is needed. The simplest solution is the k-nearest neighbors algorithm.

K-nearest neighbors

K-nearest neighbours (k-NN) is probably the most straightforward classifier among
many existing machine learning methods.

K-NN works in two phases - it will first determine the nearest neighbours of an un-
seen sample and then use them to infer the class of the sample using those neighbours.
The simplest idea of a two-class problem in two-dimensional feature space is depicted
in figure 3.15, but it can be similarly applied to a n-class problem in n-dimensional

space.

x2

>
x1

Figure 3.15: K-nearest neighbors algorithm idea in 2D feature space: the class of ¢ is deter-

mined by the classes of k nearest neighbors

24



The classification decision for sample g can be made with majority voting or dis-

tance weighted voting based on the classes of the nearest neighbours.
Formally, let

D ={(x;,y:;),i=1,....,np} (3.16)

be the training dataset of observed data, where the vector x; = (z;1, ..., Z;,) repre-
sents predictor values and y; denotes class membership.
For a new observation (g, y,) the nearest neighbour = is determined by a distance

metric:
d(q, x) = min;d(q, x;) (3.17)

with the distance metric typically (but not exclusively) being the Euclidean dis-

tance:

d(p,q) = (3.18)

The k-nearest neighbours are selected based on the given distance metric. This
ends the algorithms first stage.
To determine the class of the new observation in the second phase, let K be the set

of k-nearest neighbours of the given sample. Its class is then:

h(q) = arg max Z k(z', ) {y' = j} (3.19)

je(O,...,yn) (xl,y7)EK
where « is the kernel function assigning weights to the neighboring points based on
some measure of distance to the query point. For simple majority voting, this function

always gives 1.

3.5. Technical Stack

The solution is implemented using the PyTorch computational library.

PyTorch is a Python-based scientific computing package with two-fold usage - ten-
sor computation (like NumPy) with GPU acceleration and a deep learning research
platform with maximum flexibility and speed.

As a step further, the PyTorch Lightning library as a high-level PyTorch wrapper

was used for organizing and automating PyTorch code. Lightning organizes the code

25



in 3 categories: research code, engineering code, and non-essential code such as log-
ging. By refactoring to PyTorch Lightning: no flexibility is lost; no more unnecessary
boilerplate code; the code is generalizable and adaptable to any hardware; readability
and reproducibility are improved; advanced logging possibilities.

PyTorch Lightning enables automatic logging to TensorBoard - TensorFlow’s visu-
alisation toolkit, which was heavily used in this work to save experiment parameters,
calculate metrics, plot training graphs, and plot resulting images.

All experiments were done on 2 GPUs.

All of the code is publicly available on GitHub .

"https://github.com/mirnabaksa/Masters-Thesis

26



4. Results

This chapter shows the results of all experiments done on this dataset. Each model

architecture was tested first on 2 classes, then 4 and in the end with 6 classes, under

the assumption that the model complexity has to grow with the number of classes.
For reference, figure 4.1 shows the test set representations before training. The

goal is to get somewhat distinct clusters for each class.

—— Bacillus anthracis
Ecoli

——— Pseudomonas koreensis
o]

Ecoli
— Pseudomonas koreensis ° .o

—— Pantonea agglomerans

(a) 2 classes (b) 4 classes

—— Bacillus anthracis
Ecoli

—— Yersinia pestis

- Pseudomonas koreensis

—— Pantonea agglomerans

—— Klebsiella pneumoniae ¥

(¢) 6 classes

Figure 4.1: Test set representations before training, visualized with t-SNE

Multiple architectures were tested, each with different configurations until the best

result was found. All experiments were trained until overfit and then tested with the

27



model state just before the point of overfitting to get the best results. Some parameters

were kept constant across all experiments as shown in table 4.1.

Table 4.1: Constant Parameters

Constants
optimizer adam
reconstruction loss L1
k /# test samples

Adam (Adaptive Moment Estimation) is an adaptive learning rate optimization al-
gorithm which computes individual learning rates for different parameters. Empiri-
cally, Adam performs well in practice and compares favourably to similar stochastic
optimization methods.

The value of k£ listed in table 4.1 refers to the hyperparameter of the k-NN clas-
sification algorithm. Finding the right value of k is not trivial - a large value of £ is
computationally expensive, whereas the noise will have a higher influence on the final
result with a small k. The convention is to start out at k = /N , where N is the total
number of samples, and optimize from there. Since the emphasis of this work is more

on the models, k£ was kept constant at that value.

Overview

A short summary for context before presenting the results is that autoencoder architec-
tures (both convolutional and LSTM, undercomplete, denoising, and variational) did
not give satisfactory results.

Even when the signal was more or less reconstructed, the learned signal encodings
did not manage to detect any clusters of data. The architectures were tested out on
dummy datasets as well (e.g. with classes of very similar sine and cosine waves) and
achieved successful separation of clusters there.

Triplet networks were much more successful in learning meaningful signal encod-

ings.

28



4.1. Autoencoders

To best see the results of training autoencoders, the input, output, and target sequences

(from the test set) were plotted. The input and target sequence will be the same in

variational autoencoders, while in denoising autoencoders the input contains random

noise, as shown in figure 4.2. In order not to overflow this work with images, only the

sequence of the means (as described in chapter 2.1) will be plotted as a representative.

signal

current (pa)
b s % o o m o oa

| “\i Jfl'\ph\, /‘}rw“"w '\ ‘, N.A '“M '.)’ M\:",‘m),l

—— target

‘l‘ "‘\"1

0 50

Figure 4.2: Input sequence with added Gaussian noise and target sequence

100

timestep

150

Some experiments on autoencoders which did not yield satisfactory results were

left out of this section, mostly not to saturate the work with images of unsuccessful

architectures.

Dataset

The sizes of the split dataset are shown in table 4.2.

Table 4.2: Autoencoder dataset sizes

2 classes | 4 classes | 6 classes
Training set 8739 16 635 25318
Validation set 1092 2079 3165
Test set 1093 2 080 3166

29



4.1.1. Convolutional Autoencoder
Undercomplete
2 classes

Results for this experiment are shown in figures 4.3 and 4.4, parameters in table 4.3a

and metrics in table 4.3b. Network structure is shown in table 4.4.

means

N N Y “'f"‘ “ Y. Ll
L ﬂ""""“'v”"'"ﬂ‘-”“lw

— in

— out

‘.} S ¥ l‘l‘\
b

w

0.4 4

0.3 4

Figure 4.3: Undercomplete Convolutional Autoencoder output on 2 classes

—— Bacillus anthracis —— Bacillus anthracis

(a) Train dataset (b) Test dataset

Figure 4.4: Undercomplete Convolutional Autoencoder results on 2 classes, visualized with
t-SNE

Denoising
4 classes

Results for this experiment are shown in figures 4.5 and 4.6, parameters in table 4.5a

and metrics in table 4.5b. Network structure is shown in table 4.6.

30



0.7 q

0.6 q

0.5 1

0.4 4

0.3 1

Table 4.3: Undercomplete Convolutional Autoencoder experiment on 2 classes

Parameters

epochs 1000

encoding size | 42

Metrics

accuracy | 0.5756

(b) Metrics
(a) Parameters

Table 4.4: Undercomplete Convolutional Autoencoder structure

Layer name No. of filters Kernel size  Activation
encoder
ConvlD 16 3 ReLU
ConvlD 32 3 ReLU
ConvlD 64 3 ReLU
ConvlD 1 5 ReLU
decoder
Conv Transpose 1D 64 5 ReLU
Conv Transpose 1D 32 3 ReLU
Conv Transpose 1D 16 3 ReLU
Conv Transpose 1D 4 3 Tanh
Linear timesteps

means

— in
— out
/ 1] \ —— target

ll“\‘ | i’/‘ | “ | Ml» N\ I Ji LA MAA
W | '\ ' '/ | ’( 4 ‘ y \M\“_'\ ’I" ‘.'s"“ ‘.‘I 1",' " i ' o ‘ll \‘-. i
It P

|

|

o

50 100 150 200

Figure 4.5: Denoising Convolutional Autoencoder output on 4 classes

Table 4.5: Denoising Convolutional Autoencoder experiment on 4 classes, visualized with

t-SNE

‘ ‘ Parameters ‘ ‘ | |

epochs 1200

encoding size | 64

Metrics ‘ ‘

|| accuracy I 0.33 H

(b) Metrics
(a) Parameters

31



—— Bacillus anthracis
Ecoli
—— Yersinia pestis
——— Pseudomonas koreensis
7. MDD -

9
A

—— Bacillus anthracis
1 Ecoli
¢ —— Yersinia pestis
. - —— Pseudomonas koreensis

(a) Train dataset (b) Test dataset

Figure 4.6: Denoising Convolutional Autoencoder results on 4 classes, visualized with t-SNE

Table 4.6: Denoising Convolutional Autoencoder structure

Layer name No. of filters Kernel size Activation
encoder
Conv1D 16 3 ReLU
ConvlD 32 3 ReLU
MaxPool 1D
ConvlD 64 3 ReLU
ConvlD 32 3 ReLU
MaxPool 1D
ConvlD 16 3 ReLU
ConvlD 1 7 ReLU
decoder
Conv Transpose 1D 16 7 ReLU
Conv Transpose 1D 32 3 ReLU
Conv Transpose 1D 64 3 ReLU
Conv Transpose 1D 32 3 ReLU
Conv Transpose 1D 16 3 ReLU
Conv Transpose 1D 4 3 Tanh
Linear timesteps

32



Variational

2 classes

Results for this experiment are shown in figures 4.7 and 4.8, parameters in table 4.7a

and metrics in table 4.7b. Network structure is shown in table 4.8.

0.7 4

0.6 4

0.5+

0.4 4

0.3 4

means

— in
— out

Figure 4.7: Variational Convolutional Autoencoder output on 2 classes

(a) Train dataset

T T
100 150

(b) Test dataset

- —— Bacillus anthracis

Figure 4.8: Variational Convolutional Autoencoder results on 2 classes, visualized with t-SNE

Table 4.7: Variational Convolutional Autoencoder experiment on 2 classes

Parameters
Metrics
epochs 1200
—— accuracy | 0.5902
encoding size | 42
(b) Metrics

(a) Parameters

33



Table 4.8: Variational Convolutional Autoencoder structure

Layer name No. of filters Kernel size  Activation
encoder
ConvlD 16 3 ReLU
Conv1D 32 3 ReLU
Conv1D 64 7 ReLU
Linear (mean) 32
Linea(stdev) 32
decoder
Conv Transpose 1D 32 7 ReLLU
Conv Transpose 1D 64 3 ReLU
Conv Transpose 1D 4 3 ReLU
Linear timesteps Tanh

4 and 6 classes

Similar to the experiments with no success on 2 classes, experiments with 4 and 6

classes did not do any better.

Discussion

Some architectures manage to reconstruct the signal better than others, but no archi-

tecture was successful in clustering the encodings.

The undercomplete autoencoder (figure 4.3) did reconstruct a general outline of the
signal, with some regions better covered than others. Where it failed is reconstructing
peaks and extremes in the signal, keeping a rather flat trajectory. No clusters were

separated, even when training with a larger encoding size.

The output of the denoising autoencoder in figure 4.5 is quite interesting, as two
distinct regions are reconstructed very well while others are not reconstructed at all
(the flat sections). This pattern of some regions being covered better was occurring

again and again through the experiments. No clusters are found.

The variational autoencoder had the worst performance, with the reconstructed sig-
nal only occasionally following the target sequence. A guess as to why its performance
is bad could be that the underlying distribution of the raw signal too complex to be ap-

proximated.

34



An obvious solution to all poor performing models could be to simply increase the
encoding size or train a deeper model or train for a lot more epochs. These are all
valid points, but the risk of overfitting is quite high - a powerful autoencoder could
learn to replicate the signal perfectly, but would still fail to learn anything meaningful
about the signal. The latent representation would then contain no information about

the given sample.

4.1.2. LSTM Autoencoders

The architecture of an LSTM Autoencoder is shown in figure 4.9. LSTM encoder and
decoder consist of some number of stacked LSTM layers (one or more). The signal
encoding is the last hidden state of the LSTM encoder.

Before feeding into the decoder network, the signal encoding is repeated timestep
times and that vector is the input to the decoder. This means that for each timestep the

decoder will get the same input (our signal encoding), but a different hidden state from

the LSTM cell.
features

~
a
[ signal @ h(t)
g encoding | | ne
£ LSTM | —(h) ——> 34 | : |— dLSTM N

encoder repeat £ ecoder
- - h(t)
input output

Figure 4.9: LSTM Autoencoder Structure: after the input is fed through the encoder, its last

hidden state is repeated timestep times and fed to the decoder

The process is analogous for a variational autoencoder with a slightly different
bridge between the encoder and decoder, as shown before in section 3.11.
Undercomplete
2 classes

Results for this experiment are shown in figures 4.10 and 4.11, parameters in table 4.9a

and metrics in table 4.9b.

35



means .
in
— out

W - 1 M “,‘ 1 [
v""!m"'hn"‘ ”W‘" \Jf‘ il "ﬂ‘,‘ﬁ”, ‘,’l“q” “\\

0.7 q

0.6

o

0.5 4

e}

0.4 4

0.3+

Figure 4.10: Undercomplete LSTM Autoencoder output on 2 classes

—— Bacillus anthracis —— Bacillus anthracis
g Ecoli

(a) Train dataset (b) Test dataset

Figure 4.11: Undercomplete LSTM Autoencoder results on 2 classes, visualized with t-SNE

Table 4.9: Undercomplete LSTM Autoencoder experiment on 2 classes

Parameters
epochs 3000 Metrics
encoding size | 64 accuracy | 0.5659
layers 2 (b) Metrics

(a) Parameters

36



4 classes

Results for this experiment are shown in figures 4.12 and 4.13, parameters in table
4.10a and metrics in table 4.10b.

means —in
074 — out
\ AL
M!!l“ ' l H N i
’V ” ’ N‘ IH‘” I ”
Figure 4.12: Undercomplete LSTM Autoencoder output on 4 classes
—— Bacillus anthracis —— Bacillus anthracis
Ecoli Y Ecoli
—— Yersinia pestis _— ép og —— Yersinia pestis
—— Pseudomonas koreensis g Q’@}

Pseudomonas koreensis

C@" ;‘oog
T8,
o 6‘G,% @0
P B
° ﬁ o
® i%?% $
o 2T
® olo Oy ; ° Oq
oo ™S
(a) Train dataset (b) Test dataset

Figure 4.13: Undercomplete LSTM Autoencoder results on 4 classes, visualized with t-SNE

Table 4.10: Undercomplete LSTM Autoencoder experiment on 4 classes

Parameters
epochs 1000 Metrics
encoding size | 128 accuracy | 0.3683
layers 3 (b) Metrics

(a) Parameters

37



6 classes

Results for 6 classes were no significantly better than results on 2 and 4 classes.

Denoising Autoencoder
2 classes

Results for this experiment are shown in figures 4.14 and 4.15, parameters 1

4.11a and metrics in table 4.11b.

means

n table

in
41 — out
34 | —— target
‘ \{ | M

4 AL ol M TN AR
ol n I i]‘ ' “ﬂ\ l " y "‘ “ V V”l ‘

Vi V[ \! A
U B A VAR 'd( '1 ’ ’?’ ” ‘ [ ‘
]

Figure 4.14: Denoising LSTM Autoencoder output on 2 classes
— BacnIIus anthracis © @ —— Bacillus anthracis

Ecoli

(b) Test dataset

(a) Train dataset

Figure 4.15: Denoising LSTM Autoencoder results on 2 classes, visualized with t-

SNE

38



Table 4.11: Denoising LSTM Autoencoder experiment on 2 classes

Parameters
Metrics
epochs 2000
—— accuracy | 0.56
encoding size | 100
(b) Metrics

(a) Parameters

6 classes

Results for this experiment are shown in figures 4.16 and 4.17, parameters in table

4.12a and metrics in table 4.12b.

means

0 "l?"“"uﬁhé."‘

)
v

W

\
o] / ‘#"‘(

A A e
I \!"‘\' ,“"l "‘\, ‘" W‘!

v *“x‘f ‘
| 1 !' \ b'" ’

|

— in
— out
— target

(Y
\, | ‘
l,m' N W

100 150

Figure 4.16:

Bacillus anthracis

Ecoli

Yersinia pestis
Pseudomonas koreensis
Pantonea agglomerans
Klebsiella pneumoniae

(a) Train dataset

SR DTS

200

Denoising LSTM Autoencoder output on 6 classes

Bacillus anthracis

Ecoli

Yersinia pestis
Pseudomonas koreensis
Pantonea agglomerans
Klebsiella pneumoniae

% 8

(b) Test dataset

Figure 4.17: Denoising LSTM Autoencoder results on 6 classes, visualized with t-SNE

Variational

No significant results here.

39



Table 4.12: Denoising LSTM Autoencoder experiment on 6 classes

Parameters

epochs 1500

encoding size | 200

Metrics

accuracy | 0.31

(b) Metrics
(a) Parameters

Discussion

LSTM Autoencoders performed similarly to Convolutional Autoencoders.

The Undercomplete LSTM Autoencoder was reconstructing a very general outline
of the original signal. The reconstruction followed some peaks, but the model was
trained for a while with no further improvements.

The output of the Denoising LSTM Autoencoder again reconstructs two regions
better than the rest of the signal, which is interesting considering the architecture is
different (in comparison to the Convolutional Autoencoder).

The Variational LSTM Autoencoder performed worse by far (thus no results in-

cluded above), with the reconstruction being almost a flat line.

4.1.3. Autoencoder Performance Summary

A fact to remember when thinking about autoencoder results is that the reconstruction
plots above show only i of the data fed into the autoencoder. The plots show only the
means signal, while the autoencoder was working on reconstructing medians, standard
deviations, and interquartile ranges as well.

Another thing to think about is the reconstruction versus compression autoencoder
usage. The goal of this work was not just to reconstruct the signal, but achieve gener-
alized compression - i.e. to be able to generate a compressed encoding of an unseen
sample. As seen in result images, the compressed encodings the autoencoders learned
were not successful in separating clusters of data even though in some cases the au-
toencoder did loosely manage to reconstruct some parts of the input signal. However,
learning encodings that cluster the data is not the actual job of the autoencoder as it is
trained on pure reconstruction loss.

All in all, the autoencoder performance was not satisfactory.

40



4.2. 'Triplet Networks

Dataset

Dataset sizes can be seen in table 4.13.

Table 4.13: Triplet dataset sizes

2 classes | 4 classes | 6 classes
Training set 16 758 | 100548 | 253 180
Validation set 2184 12 474 31650
Test set 1093 2 080 3166

These datasets are larger in size than the ones in autoencoder networks (table 4.2)
because they are formed of triplets, as shown in algorithm 1.

Triplets are formed in a way where for each input sample, n samples from a class
different from the class of the sample are randomly chosen from the dataset. Those
samples are used as the negative part of the triplet, while the positive samples are

randomly chosen from the same class as the input sample.

Algorithm 1 Triplet formation
for sample, label in dataset do

for other in classes do
if label is not other then
positive <— n samples of class label
negative <— n samples of class other
triplets <— (n x sample, triplet positive, triplet negative)
add triplet to triplet dataset
end if
end for

end for

Effectively, one input sample yields n x (num classes — 1) samples, where n is the
desired number of triplets formed from one input sample.

In these experiments, n = 2, so each input sample will yield 2 triplets per class
different from the input sample class. The exception is the test set, for which only the

anchor is used for evaluation, so no additional samples are generated (n = 1).

41



Metrics

Since triplet network results are much better than the autoencoder results, more metrics
were calculated for these experiments.

The metrics include precision, recall, F1 score, and accuracy as usual.

Precision is the ratio of correctly predicted positive observations to the total pre-
dicted positive observations:
true positive

recision = 4.1
P true positive + false positive @D

Recall (sensitivity) is the proportion of correctly classified positive observations to

the all observations in the actual class:

t 11
recall = e 4.2)
true positive + false negative

F1 score is the weighted average (otherwise named the harmonic mean) of preci-

sion and recall:

1 score — 2 % preci.siion x recall 4.3)
precision + recall

Accuracy is the proportion of correctly classified samples to all samples:

true positive + true negative (4.4)
accuracy = .
4 positive + negative

In a multi-class scenario such as this one, the metrics are calculated for each class
and then averaged (so-called macro averaging).

These metrics are more useful in scenarios of imbalanced classification - with one
category representing the majority of data points, such as e.g. the rate of a rare dis-
ease in a population. Still, it can be convenient to have more information about the

performance of a model.

42



4.2.1.

2 classes

Convolutional Triplet Network

Network structure for this experiment is shown in table 4.18, results in figure 4.19,
parameters in table 4.14a and metrics in table 4.14b.

— convolution

B AL |

16x3

max-pool

convol

M

32x3

Figure 4.18: Convolutional Triplet Network Structure on 2 classes

Ecoli

—— Pseudomonas koreensis

(a) Train dataset

ution fully
. connected
=i convolution
max-pool
— |I|Iit| — —
1x5 42
Ecoli
- Pseudomonas koreensis
(e
‘%Oog
@
% P _°

(b) Test dataset

Figure 4.19: Convolutional Triplet Network results on 2 classes, visualized with t-SNE

4 classes

Network structure for this experiment is shown in figure 4.20, results in figure 4.21,
parameters in table 4.15a and metrics in table 4.15b.

43

Buipooud



Table 4.14: Convolutional Triplet Network experiment on 2 classes

Parameters

epochs

50

encoding size

42

(a) Parameters

I_ET_— 16x3

——— Bacillus anthracis
Ecoli

™

32x3

Pseudomonas koreensis

—— Pantonea agglomerans

(a) Train dataset

Metrics
precision | 0.8263 recall | 0.8177

F1 0.8208 || accuracy | 0.8265
(b) Metrics

convolution

1j=j=j1 fully
convolution connected

max-pool max-pool

H['EDH

64x3

—)H]Wﬂ—)
1x5

Figure 4.20: Convolutional Triplet Network Structure on 4 classes

——— Bacillus anthracis
Ecoli

Pseudomonas koreensis
—— Pantonea agglomerans

(b) Test dataset

E[Ij_)

48

Figure 4.21: Convolutional Triplet Network results on 4 classes, visualized with t-SNE

44

Buipooud



Table 4.15: Convolutional Triplet Network experiment on 4 classes

Parameters Metrics

epochs 75 precision | 0.5559 recall | 0.5815
encoding size | 48 F1 0.5815 || accuracy | 0.5889

(a) Parameters (b) Metrics

6 classes

Results for this experiment are shown in figure 4.22, network structure in figure 4.23,

parameters in table 4.16a and metrics in table 4.16b.

—— Bacillus anthracis —— Bacillus anthracis
Ecoli . Ecoli
e —— Yersinia pestis g —— Yersinia pestis

: Pseudomonas koreensis
& —— Pantonea agglomerans
Klebsiella pneumoniae

Pseudomonas koreensis
—— Pantonea agglomerans
Klebsiella pneumoniae

(a) Train dataset (b) Test dataset

Figure 4.22: Convolutional Triplet Network results on 6 classes, visualized with t-SNE

Table 4.16: Convolutional Triplet Network experiment on 6 classes

Parameters Metrics

epochs 100 precision | 0.5392 recall | 0.5298
encoding size | 50 F1 0.5276 || accuracy | 0.534

(a) Parameters (b) Metrics

45



convolution

= . convolution
— convolution j:ljjjjl

max-pool

16x3 it L |
input 32x3 |
64x3
convolution
fully connected tljjjjjl
convolution

o max-pool

[=

£

8 «—/

S — - —

50 1x7

128 x5

Figure 4.23: Convolutional Triplet Network Structure on 6 classes

Discussion

Convolutional Triplet Networks were kept relatively shallow, with few convolutional
layers. Adding more layers was causing the network to quickly overfit on training data.
The overfitting was a recurring problem in these experiments, even with methods like
batch normalization which should help regularize the network.

The number of channels and filter sizes were lower at the start of the networks
and increased gradually in order to extract more representative, high-level informa-
tion. Starting with the shape of 4 input channels (mean, median, standard deviation,

interquartile range), the data was in the end reduced to 1 channel which represents the

46



learned data encoding.

The convolutional triplet networks managed to detect some data clustering, much
more successfully than autoencoders. The 2-class experiment was quite successful
with a nice division between the classes. The 4-class experiment did separate some
clusters more successfully than others, but there are still opportunities for further en-
hancements. The same goes for the 6-class experiment.

What is interesting to note is the snake-like shape of the visualized data, more
visible in 4-class and 6-class experiments. This happens because the model tries to
separate the points according to a fixed margin, and this shape is mathematically more

optimal for a multi-class problem.

47



4.2.2. LSTM Triplet Network
Some parameters, shown in 4.17, were kept constant across training runs.

Table 4.17: LSTM Constant Parameters

Constants

loss margin | 0.2

bidirectional | True

The general structure of the network for all experiments can be seen in figure 4.24.
The signal encoding in this scenario is the LSTM’s hidden state at the last timestep.
What will differ between experiments is the number of stacked LSTM layers, the

dropout rate between layers, and the number of hidden units.

LSTM layer

LSTM

features block

S G c0)] |h()

— LSTM
— block

L

timesteps
I

LSTM

block

LSTM hidden units = signal encoding
block ]

(h1t, h2, ..., hnt)

c(t) h(t)

Figure 4.24: Triplet LSTM Network Structure: input is fed into a LSTM layer, its hidden state

at the last timestep is the signal encoding

48



2 classes

Results for this experiment are shown in figure 4.25, parameters in table 4.18a and

metrics in table 4.18b.

Ecoli

Pseudomonas koreensis

Ecoli
Pseudomonas koreensis

(a) Train dataset

(b) Test dataset

Figure 4.25: Triplet LSTM Network results on 2 classes, visualized with t-SNE

Table 4.18: LSTM Triplet Network experiment on 2 classes

Parameters
epochs | 50 || encoding size | 24
layers | 2 dropout 0.3
(a) Parameters
4 classes

Results for this experiment are shown in figure 4.26, parameters in table 4.19a and
metrics in table 4.19b.

Table 4.19: LSTM Triplet Network experiment on 4 classes

Parameters
epochs | 100 || encoding size | 64
layers | 2 dropout 0.5

(a) Parameters

49

Metrics
precision | 0.9603 recall | 0.9088
F1 0.9344 || accuracy | 0.9224
(b) Metrics
Metrics
precision | 0.7396 recall 0.742
F1 0.7405 || accuracy | 0.7596
(b) Metrics




| —— Bacillus anthracis

Ecoli
- Pseudomonas koreensis
Pantonea agglomerans

——— Bacillus anthracis
Ecoli
- Pseudomonas koreensis
Pantonea agglomerans

(a) Train dataset (b) Test dataset

Figure 4.26: Triplet LSTM Network results on 4 classes, visualized with t-SNE

6 classes

Results for this experiment are shown in figure 4.27, parameters in table 4.20a and

metrics in table 4.20b.

—— Bacillus anthracis —— Bacillus anthracis

Ecoli Ecoli
~—— Yersinia pestis ~—— Yersinia pestis
~——— Pseudomonas koreensis ~—— Pseudomonas koreensis
—— Pantonea agglomerans —— Pantonea agglomerans
Klebsiella pneumoniae Klebsiella pneumoniae

(a) Train dataset (b) Test dataset

Figure 4.27: Triplet LSTM Network results on 6 classes, visualized with t-SNE

50



Table 4.20: LSTM Triplet Network experiment on 6 classes

Parameters Metrics
epochs | 200 || encoding size | 128 precision | 0.6541 recall | 0.666
layers | 2 dropout 0.5 F1 0.6551 || accuracy | 0.683
(a) Parameters (b) Metrics

Discussion

These experiments were by far most successful.

On the 2-class experiment the clusters are very distinctly separated. The encoding
size is quite low which is good - only 24 units, whereas the dimensionality of input
data is ~ 1000.

The 4-class experiment shows two more or less finely divided clusters with two
classes still somewhat mixed together. This is still a valid result considering the di-
mensionality of the problem.

Similar results on the 6-class experiment - 3 distinct clusters with 3 classes still

mixed up in the test dataset.

4.2.3. Further Experiments

Since the LSTM Triplet Network had good results, further experiments were made in
an attempt to enhance its performance even more. All these experiments were done on

a 6 class scenario.

Signal Energy

To describe the original signal better, an additional data feature was calculated during
preprocessing. This feature was signal energy, which for a discrete-time signal is
defined as

E,= ) |z(n) (4.5)
By using this additional feature, the data is now in shape (timesteps/400,5).
To get as comparable results as possible, parameters for the experiment with added

signal energy were kept the same as the experiment with no added energy - as in table
4.20a.

51




The results of this experiment are shown in figure 4.28. Subfigure 4.28a is the same
as subfigure 4.27a. The comparison of results is shown in table 4.21. Parameters were
as in table 4.20a.

——— Bacillus anthracis —— Bacillus anthracis

Ecoli Ecoli
~— Yersinia pestis Yersinia pestis
- Pseudomonas koreensis Pseudomonas koreensis
—— Pantonea agglomerans Pantonea agglomerans
Klebsiella pneumoniae Klebsiella pneumoniae

(a) Test set results without signal energy (b) Test set results with signal energy

Figure 4.28: LSTM Triplet Network experiment results on 6 classes with and without added
signal energy, visualized with t-SNE

Table 4.21: LSTM Triplet Network experiment metrics on 6 classes, with and without signal

energy
Metric | Without Energy | With Energy
precision 0.6541 0.6534
recall 0.666 0.6706
F1 0.6551 0.6571
accuracy 0.683 0.6672

As can be seen both from result images and metrics, adding signal energy did not
significantly improve model performance. However, a good plan for further research
would be to try and find an optimal combination of statistical parameters in order to
describe the signals as closely as possible.

In this work, only generic statistical coefficients (mean, median, standard deviation,
and interquartile range) were used, but it is a good idea to include some signal-specific

measures such as the signal energy used in this experiment.

52



Longer Sequences

The original dataset, described in section 2, was preprocessed by splitting reference
genomes into smaller sections. The length of the originally made sections was 10k
nucleotides. Further experiments were conducted where the genomes were split into
sections of 20k and 50k nucleotides, to see if starting sequence length has any impact
on the results. This experiment was done on a smaller scale, with 2000 examples from
each class, in interest of saving time and resources.

Results are shown in figure 4.29, parameters in table 4.22a, and comparison of
metrics in table 4.22b. Parameters were kept constant through experiments so that the

model performance could be assessed objectively.

Bacillus anthracis

Ecoli

Yersinia pestis
Pseudomonas koreensis
Pantonea agglomerans
Klebsiella pneumoniae

(a) Test set results on sequence length of 10k - orig-
inal length

—— Bacillus anthracis — Bacillus anthracis

Ecoli o Ecoli
——— Yersinia pestis Yersinia pestis
~—— Pseudomonas koreensis Pseudomonas koreensis
—— Pantonea agglomerans Pantonea agglomerans
—— Klebsiella pneumoniae Klebsiella pneumoniae

(b) Test set results on sequence length of 20k (c) Test set results on sequence length of 20k

Figure 4.29: Test set results on experiment with longer sequences, visualized with t-SNE

Even though not as visible in the resulting images, longer sequences did improve
model performance significantly, best seen from table 4.22b - accuracy improved from
65.83% in a 10k scenario to 83.75% in a 50k scenario.

53



Table 4.22: LSTM Triplet Network experiment results on 6 classes, with different starting

sequence length

Metric 10k 20k S0k

Parameters precision | 0.6168 | 0.7477 | 0.8322
epochs 75 recall | 0.6336 | 0.7375 | 0.8309
encoding size | 64 F1 0.6199 | 0.7397 | 0.8306

accuracy | 0.6583 | 0.7417 | 0.8375

(a) Parameters

(b) Metric comparison

By refactoring from 10k to 20k sequence length, model accuracy improved by
almost 10%, with more prominent clustering in the resulting images. Refactoring from
20k to 50k did not improve accuracy proportionally to the increased length, with the
accuracy again improving by a little less than 10%. Resulting clusters were comparably
good as well.

The reason for model improvement when trained on longer sequences is simply
that the model has more information about the sequence itself. Moreover, since the
sliding window offset is kept constant at 1000 bp and the window length is increased,
the sequence overlap increases as well. The model then has more context for each
preprocessed sequence and how it relates to other sequences.

What needs to be emphasized here is that prolonging the sequences is feasible only
in the artificial dataset preprocessing. This step was done in order to simulate the actual

reads - when the model is trained on real data one has no influence on read lengths.

Time and Memory Usage

An interesting comparison of time and memory usages can be done along with this
experiment. Table 4.23 shows total training time for 75 epochs, and total size of the
dataset in memory for different sequence lengths.

One should note that this is a dataset of reduced size in comparison to other exper-

iments.

Table 4.23: Comparison of time and memory usage

Metric 10k 20k 50k

total training time 54m 1h 47m 3h 15m
total dataset size | 128.5 MB | 256.2 MB | 641.1 MB

54



As expected, the training time and memory usage increase proportionally with the
increase of sequence lengths. Increasing sequence length will improve performance,
but with the cost of more resource usage - there needs to be a compromise in order to
get best performance while still being able to work with the dataset.

Another thing to note here is that the dataset consists of only 6 microbial species,
whereas an actual, real-life scenario would include tens of thousands of different mi-

crobes.

4.2.4. Triplet Networks Performance Summary

Triplet networks in general were much more successful than autoencoders. This is only
logical since triplet networks learn directly on signal encodings - where autoencoders
tried to simply reconstruct a given input, triplet networks worked on actually separating
the encodings of different classes.

In terms of the comparison of convolutional and LSTM architectures, the results are
as expected - LSTM networks performed better. LSTMs were designed for problems
like these - long sequences with important data potentially multiple timesteps apart.
This is why LSTMs were usually applied to sequence modelling problems, while con-
volutional networks work better with images where the entirety of an input sample is

from a fixed point in time.

55



5. Evaluation

S.1. Results on the Zymo mock community dataset

2 classes

Results for this experiment are shown in figure 5.1, parameters in table 5.1a and metrics

in table 5.1b.

—— Enterococcus faecalis
Staphylococcus aureus

(a) Train dataset

—— Enterococcus faecalis

(b) Test dataset

Staphylococcus aureus

Figure 5.1: Zymo dataset Triplet LSTM Network results on 2 classes, visualized with t-SNE

Table 5.1: Zymo dataset 2 class Triplet LSTM Network experiment

Parameters
epochs | 1000 || encoding size | 48
layers 1 dropout 0.1

(a) Parameters

Metrics
precision | 0.67 recall | 0.6658
F1 0.6612 || accuracy | 0.6625

(b) Metrics

56




4 classes

Results for this experiment are shown in figure 5.2, parameters in table 5.2a and metrics
in table 5.2b.

—— Enterococcus faecalis } —— Enterococcus faecalis
Staphylococcus aureus v Staphylococcus aureus

——— Listeria monocytogenes —— Listeria monocytogenes

Lactobacillus fermentum - Lactobacillus fermentum

(a) Train dataset (b) Test dataset

Figure 5.2: Zymo dataset Triplet LSTM Network results on 4 classes, visualized with t-SNE

Table 5.2: Zymo dataset 4 class Triplet LSTM Network experiment

Parameters Metrics
epochs | 200 || encoding size | 64 precision | 0.5659 recall | 0.5781
layers 3 dropout 0.25 F1 0.5691 || accuracy | 0.5625
(a) Parameters (b) Metrics

57




6 classes

Results for this experiment are shown in figure 5.3, parameters in table 5.3a and metrics
in table 5.3b.

—— Enterococcus faecalis —— Enterococcus faecalis
Staphylococcus aureus Staphylococcus aureus
Listeria monocytogenes
Lactobacillus fermentum
Bacillus subtilis
Escherichia coli

Listeria monocytogenes
Lactobacillus fermentum
—— Bacillus subtilis
—— Escherichia coli

(a) Train dataset (b) Test dataset

Figure 5.3: Zymo dataset Triplet LSTM Network results on 6 classes, visualized with t-SNE

Table 5.3: Zymo dataset 6 class Triplet LSTM Network experiment

Parameters Metrics
epochs | 500 || encoding size | 128 precision | 0.3058 recall | 0.3179
layers | 3 dropout 0.5 F1 0.3027 || accuracy | 0.3333
(a) Parameters (b) Metrics

5.2. Discussion

Results on the Zymo mock dataset are worse than those from the artificial dataset.
This is expected as these signals are true signals - not artificially generated. They are
also more diverse in length (some being much shorter than the others) which means
that the preprocessing pipeline could be improved on these signals, perhaps by using
more statistical coefficients to describe the data. What is more, there is the possible
additional introduced error through the Kraken and cross-referencing pipeline.

These results are also from a small fraction of the entire sequenced dataset, which

can easily mean that some meaningful features are lost in those omitted signals.

58




6. Conclusion

The main focus of this work is on nanopore raw signals. A raw signal in nanopore
sequencing is generated when a DNA strand is driven through a nano-scale hole, where
each nucleotide induces a change in current when passing through. The generated
signals are not even close to perfect, due to the background noise of the sequencing
technology and the pure nature of the problem. The goal is to extract relevant features
from these signals so that one could differ between microbial species based on that
information.

After preprocessing the dataset, this work tests multiple types of models in hope
of finding the best compressed signal representations which would contain relevant in-
formation about the given signal. After training a model, its success is tested by using
a classifier on a test dataset of unseen samples. The models include autoencoders (un-
dercomplete, denoising, and variational) and triplet networks, both using convolutional
and LSTM architectures.

Of the architectures specified above, LSTM triplet networks achieved the best re-
sults and were most successful in identifying clusters of embedded representations.
The LSTM triplet architecture was therefore evaluated further on actual signal data

from the Zymo mock community publicly available dataset.

Future work

As far as future work goes, autoencoders can be researched further to see if the problem
was in the architecture itself or the dataset is simply too complicated for the autoen-
coder to manage.

Another improvement could be to improve the loss function of the autoencoder
- instead of trying to simply duplicate the signal, an additional term could be added
which would regulate how close the actual signal encodings of the same class are
to each other. This would potentially nudge the autoencoder into learning features

specific to each microbe.

59



If an autoencoder gives solid signal reconstruction but separates the compressed
signals poorly, another idea is to try to separate autoencoder encodings further using
triplet loss - essentially combining the two network architectural concepts used in this
work.

As already mentioned, a possible improvement on both autoencoders and triplet
networks is a different combination of statistical coefficients used to describe the sig-
nals. Instead of using generic descriptive coefficients, signal-specific measures such as
signal energy, amplitude or even shifting the signal to the frequency domain could be

useful to research.

60



BIBLIOGRAPHY

Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from the

data generating distribution. 2012.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning (Adaptive Com-
putation and Machine Learning. MIT Press, 2016.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9:1735-80, 12 1997.

Elad Hoffer and Nir Ailon. Deep metric learning using triplet network, 2014.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backprop-

agation and approximate inference in deep generative models, 2014.
Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.

Imchang Lee, Yeong Ouk Kim, Sang-Cheol Park, and Jongsik Chun. Orthoani: An
improved algorithm and software for calculating average nucleotide identity. Inter-
national Journal of Systematic and Evolutionary Microbiology, 66(2):1100-1103,
2016. ISSN 1466-5026.

Yu Li, Renmin Han, Chongwei Bi, Mo Li, Sheng Wang, and Xin Gao. Deepsimulator:
a deep simulator for nanopore sequencing. Bioinformatics, 34(17):2899-2908, 04
2018. ISSN 1367-4803.

Nicholas J. Loman, Samuel M. Nicholls, Joshua C. Quick, and Shuiquan Tang. Ultra-
deep, long-read nanopore sequencing of mock microbial community standards.
bioRxiv, 2018.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embed-
ding for face recognition and clustering. 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jun 2015.

61



M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE Trans-
actions on Signal Processing, 45(11):2673-2681, 1997.

Laurens Van der Maaten and Geoffrey Hinton. Viualizing data using t-sne. Journal of
Machine Learning Research, 9:2579-2605, 11 2008.

Derrick Wood and Steven Salzberg. Kraken: Ultrafast metagenomic sequence classi-

fication using exact alignment. Genome biology, 15, 2014.

Derrick Wood, Jennifer Lu, and Ben Langmead. Improved metagenomic analysis with
kraken 2. Genome Biology, 20, 2019.

62



LIST OF FIGURES

2.1.
2.2.

2.3.
2.4.

3.1.

3.2
3.3.

3.4.
3.5.
3.6.
3.7.
3.8.

3.9.
3.10.
3.11.

Sliding window concept with window length 25 and offset 10 . . . . .
Example of the first 1000 timesteps of a signal generated by DeepSim-
ulator . ...
Raw signalexample . . . . . . .. .. ... .. ... .. ...,
Preprocessed signal example. A raw signal is first split into fragments
of 400 timesteps which are then each mapped to 4 statistics - mean,

median, standard deviation, interquartile range. . . . . .. .. .. ..

Scheme of the work pipeline. Raw signals go through a preprocess-
ing stage before they are fed into a model. The model learns signal
representations, which are visualized with tSNE and classified to a mi-
crobial species. . . . . . . ...
Overview of models used inthiswork . . . . ... ... ... ....
Simple Artificial Neural Network architecture with an input layer, one
hidden layer and an outputlayer . . . . ... ... ... .. .....
Effect of applying the sigmoid activation function multiple times . . .
Cross-correlation (convolution) appliedtoa 1D grid . . . . . . . . ..
Recurrent Neural Network architecture . . . . . . . . ... ... ...
LSTMcell scheme . . . . ... ... ... ... ...........
Autoencoder architecture, consisting of an encoder which learns com-
pressed representations, and a decoder which learns to map the repre-
sentation back to the original output . . . . . . .. ... ...
Hidden variable z generating an observationz . . . . . .. ... ...
Using known observations z to estimate the hidden variable z . . . . .
Variational Autoencoder architecture: p(x|z) is approximated with a

distribution g(2|x) . . . . . . L

10
11

12
13
14
15
16

17
19
20

20

63



3.12.

3.13.

3.14.

3.15.

4.1.
4.2.
4.3.
4.4.

4.5.
4.6.

4.7.
4.8.

4.9.

4.10.

4.11.

4.12.
4.13.

4.14.
4.15.

4.16.

Variational Autoencoder implementation: encoder maps the input into
p and o in latent space. A similar point z is sampled from N (u, o),
andfedtothedecoder . . . . . .. ... ... .. ... L.
The effect of the reparametrization trick on random sampling: intro-
ducing a new parameter ¢ randomly sampled from a unit Gaussian en-
ables random samplingof z . . . . . .. ... ... .. ... .....
Triplet learning: positive samples are pushed closer to the anchor and
negative samples further fromit . . . .. ... .. ... ... .. ..
K-nearest neighbors algorithm idea in 2D feature space: the class of ¢

is determined by the classes of k nearest neighbors . . . . . ... ..

Test set representations before training, visualized with t-SNE

Input sequence with added Gaussian noise and target sequence . . . .
Undercomplete Convolutional Autoencoder output on 2 classes . . . .
Undercomplete Convolutional Autoencoder results on 2 classes, visu-
alizedwitht-SNE . . . . .. ... ..
Denoising Convolutional Autoencoder output on 4 classes . . . . . .
Denoising Convolutional Autoencoder results on 4 classes, visualized
witht-SNE . . . . . . ..
Variational Convolutional Autoencoder output on 2 classes . . . . . .
Variational Convolutional Autoencoder results on 2 classes, visualized
witht-SNE . . . . . . o
LSTM Autoencoder Structure: after the input is fed through the en-
coder, its last hidden state is repeated timestep times and fed to the
decoder . . . . . . . .
Undercomplete LSTM Autoencoder output on 2 classes . . . . . . . .
Undercomplete LSTM Autoencoder results on 2 classes, visualized
witht-SNE . . . . .. .
Undercomplete LSTM Autoencoder output on 4 classes . . . . . . . .
Undercomplete LSTM Autoencoder results on 4 classes, visualized
witht-SNE . . . . . . .
Denoising LSTM Autoencoder output on 2 classes . . . . . .. . ..
Denoising LSTM Autoencoder results on 2 classes, visualized with
t-SNE . . .

Denoising LSTM Autoencoder output on 6 classes . . . . . . . . ..

64



4.17.

4.18.
4.19.

4.20.
4.21.

4.22.

4.23.
4.24.

4.25.
4.26.
4.27.
4.28.

4.29.

5.1.

5.2.

5.3.

Denoising LSTM Autoencoder results on 6 classes, visualized with
t-SNE . . .
Convolutional Triplet Network Structure on 2 classes . . . . . . . ..

Convolutional Triplet Network results on 2 classes, visualized with t-

Convolutional Triplet Network Structure on 4 classes . . . . . . . ..

Convolutional Triplet Network results on 4 classes, visualized with t-

Convolutional Triplet Network Structure on 6 classes . . . . . . . ..
Triplet LSTM Network Structure: input is fed into a LSTM layer, its
hidden state at the last timestep is the signal encoding . . . . . . . ..
Triplet LSTM Network results on 2 classes, visualized with t-SNE . .
Triplet LSTM Network results on 4 classes, visualized with t-SNE . .
Triplet LSTM Network results on 6 classes, visualized with t-SNE . .
LSTM Triplet Network experiment results on 6 classes with and with-
out added signal energy, visualized witht-SNE . . . . . .. ... ..
Test set results on experiment with longer sequences, visualized with
t-SNE . . ..

Zymo dataset Triplet LSTM Network results on 2 classes, visualized
witht-SNE . . . . . . .
Zymo dataset Triplet LSTM Network results on 4 classes, visualized
witht-SNE . . . . . . o
Zymo dataset Triplet LSTM Network results on 6 classes, visualized
witht-SNE . . . . . . .

65



LLIST OF TABLES

2.1.
2.2.
2.3.

4.1.
4.
43.
4.4.
4.5.

4.6.

4.7.

4.8.

4.9.

4.10.
4.11.
4.12.
4.13.
4.14.
4.15.
4.16.
4.17.
4.18.
4.19.
4.20.
4.21.

Original Genome Lengths . . . . . . . . .. .. ... .........
Average Nucleotide Identity scores . . . . . . .. ... ... ....

Sample distribution through classes . . . . ... .. ... ... ...

Constant Parameters . . . . . .. .. ... ... oL
Autoencoder dataset sizes . . . . . ... ..o
Undercomplete Convolutional Autoencoder experiment on 2 classes .
Undercomplete Convolutional Autoencoder structure . . . . . . . . .
Denoising Convolutional Autoencoder experiment on 4 classes, visu-
alizedwitht-SNE . . . . . .. .. .. oo
Denoising Convolutional Autoencoder structure . . . . . . . ... ..
Variational Convolutional Autoencoder experiment on 2 classes

Variational Convolutional Autoencoder structure . . . . . .. .. ..
Undercomplete LSTM Autoencoder experiment on 2 classes . . . . .
Undercomplete LSTM Autoencoder experiment on 4 classes . . . . .
Denoising LSTM Autoencoder experiment on 2 classes . . . . . . . .
Denoising LSTM Autoencoder experiment on 6 classes . . . . . . . .
Triplet dataset sizes . . . . . . . . . . . .. ..
Convolutional Triplet Network experiment on 2 classes . . . . . . . .
Convolutional Triplet Network experiment on 4 classes . . . . . . . .
Convolutional Triplet Network experiment on 6 classes . . . . . . . .
LSTM Constant Parameters . . . . . . . . .. .. ... ... .....
LSTM Triplet Network experimenton 2 classes . . . . . . . ... ..
LSTM Triplet Network experimenton 4 classes . . . . . . ... ...
LSTM Triplet Network experimenton 6 classes . . . . . .. ... ..
LSTM Triplet Network experiment metrics on 6 classes, with and with-

outsignal energy . . . . . . . ...

28
29
31
31

52

66



4.22.

4.23.

5.1.
5.2
5.3.

LSTM Triplet Network experiment results on 6 classes, with different

starting sequence length . . . . . . .. ... ... L. 54
Comparison of time and memory usage . . . . . . .. .. ... ... 54
Zymo dataset 2 class Triplet LSTM Network experiment . . . . . . . 56
Zymo dataset 4 class Triplet LSTM Network experiment . . . . . . . 57
Zymo dataset 6 class Triplet LSTM Network experiment . . . . . . . 58

67



Microbe Detection Using Deep Learning

Abstract

Microbes, omnipresent microorganisms invisible to the naked eye, impact many
functions in the human body. The ability to detect and classify them is essential in
order to discover diseases, prescribe medication, and keep a healthy lifestyle. The goal
of this thesis is to develop a method for microbe detection based on a deep learning
architecture. The architecture is designed to find suitable representations of signals
corresponding to sequenced microbe DNA fragments. After finding the signal repre-
sentations, an appropriate distance metric is used to separate different species in the

latent space. In the end, reads are classified using a suitable classifier.

Keywords: bioinformatics, deep learning, triplet loss, autoencoder, classification

Prepoznavanje mikroba uporabom dubokog ucenja

Sazetak

Mikrobi, sveprisutni mikroorganizmi nevidljivi golom oku, utjeCu na mnogo funkcija
u ljudskom tijelu. Mogucnost njihovog prepoznavanja i klasificiranja je vazna kod
otkrivanja bolesti, prepisivanja lijekova i odrzavanja zdravog nacina Zivota. Cilj ovog
rada je razvoj metode za detekciju mikroba koriste¢i metode dubokog ucenja. Razvi-
jena metoda pronalazi odgovarajuce reprezentacije signala oCitanih za dani DNA frag-
ment mikroba. Nakon pronalaska reprezentacija signala, odgovarajuca metrika je ko-
riStena za razdvajanje razli¢itih vrsta u latentnom prostoru. U konacnici, oCitanja su

klasificirana koriste¢i prikladni klasifikacijski model.

Kljucne rijeci: bioinformatika, duboko ucenje, trojni gubitak, autoenkoder, klasi-

fikacija



