
UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 2251

MICROBE DETECTION USING DEEP LEARNING

Mirna Baksa

Zagreb, June 2020

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 2251

MICROBE DETECTION USING DEEP LEARNING

Mirna Baksa

Zagreb, June 2020

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Zagreb, 13 March 2020

MASTER THESIS ASSIGNMENT No. 2251

Student: Mirna Baksa (0036491078)

Study: Computing

Profile: Computer Science

Mentor: prof. Mile Šikić

Title: Microbe Detection Using Deep Learning

Description:

Microbes are omnipresent organisms that are not possible to be seen by naked eye. The term includes many
types of microorganisms, such as bacteria, viruses, fungi, etc. They affect and interact with humans in
multiple ways - food production and digestion, immune system, and many other functions in the body. It is
essential to be able to detect and classify them to discover diseases, prescribe medication, and keep a
healthy lifestyle. The goal of this work is to detect microbe corresponding with the given sequenced DNA
fragments by using a suitable representation of a sequenced signal. After finding a signal representation, the
goal is to find an appropriate distance metric to separate different species in the latent space properly. In the
end, reads will be classified using a classifier like k-NN. Develop a method for microbe detection based on a
deep learning architecture. For evaluation of results, use a publicly available dataset, such as Zymo mock
community dataset. The solution should be implemented in Python with the PyTorch or similar computational
library. The source code should be documented using comments and should follow the Google Python Style
Guide when possible. The complete application should be hosted on GitHub under an OSI approved license.

Submission date: 30 June 2020

SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 13. ožujka 2020.

DIPLOMSKI ZADATAK br. 2251

Pristupnica: Mirna Baksa (0036491078)

Studij: Računarstvo

Profil: Računarska znanost

Mentor: prof. dr. sc. Mile Šikić

Zadatak: Prepoznavanje mikroba uporabom dubokog učenja

Opis zadatka:

Mikrobi su sveprisutni, golim okom nevidljivi organizmi. Pod pojmom mikrob podrazumijevaju se mnoge vrste
mikroorganizama poput bakterija, virusa, gljivica, itd. Oni utječu i međudjeluju s ljudima na više načina - u
proizvodnji i razgradnji hrane, kod imunološkog sustava i kod mnogo drugih funkcija u ljudskom organizmu.
Stroga, važno je moći prepoznati i klasificirati mikrobe kako bi otkrili bolesti, prepisali liječenje i zadržali zdrav
način života. Cilj ovoga rada je prepoznavanje mikroba za dani očitani DNA fragment koristeći odgovarajuću
reprezentaciju očitanog signala. Nakon reprezentacije signala, cilj je pronaći odgovarajuću metriku kako bi u
latentnom prostoru uspješno razdvojili različite mikrobe. U konačnici, očitanja klasificirati koristeći
klasifikacijski model, npr. k-NN. Zadatak je razviti metodu za otkrivanje mikroba koristeći metode dubokog
učenja. Za evaluaciju može se koristiti neki javno dostupni skup podataka, primjerice Zymo mock community
skup podataka. Rješenje je potrebno implementirati u programskom jeziku Python koristeći PyTorch ili sličnu
biblioteku za matrični izračun. Izvorni kod je potrebno dokumentirati koristeći komentare i razvijati prema
Google Python Style Guide kada je to moguće. Cijeli programski proizvod potrebno je postaviti na GitHub
pod jednu od OSI odabranih licence.

Rok za predaju rada: 30. lipnja 2020.

I would like to express my sincere gratitude to my mentor Mile Šikić for his

constant motivation, extensive guidance and opportunities given throughout my entire

university experience.

An additional thank you to Dominik Stanojević for his help with this thesis.

Last, but not least, I thank my family and friends for their unconditional love,

support and encouragement, without which my success would not have been possible.

iii

CONTENTS

1. Introduction 1

2. Dataset 3

2.1. Preprocessing . 4

2.1.1. Raw Signals . 4

2.1.2. Reducing dimensionality . 6

2.1.3. Normalization . 7

2.1.4. Summary . 8

2.2. Zymo mock community dataset . 8

3. Methods 10

3.1. Overview . 10

3.1.1. Artificial Neural Networks 11

3.1.2. Convolutional Neural Networks 13

3.1.3. Recurrent Neural Networks 14

3.1.4. Long Short-Term Memory Networks 15

3.2. Models . 17

3.2.1. Autoencoders . 17

3.2.2. Triplet networks . 22

3.3. Visualization . 23

3.4. Classification . 24

3.5. Technical Stack . 25

4. Results 27

4.1. Autoencoders . 29

4.1.1. Convolutional Autoencoder 30

4.1.2. LSTM Autoencoders . 35

4.1.3. Autoencoder Performance Summary 40

iv

4.2. Triplet Networks . 41

4.2.1. Convolutional Triplet Network 43

4.2.2. LSTM Triplet Network . 48

4.2.3. Further Experiments . 51

4.2.4. Triplet Networks Performance Summary 55

5. Evaluation 56

5.1. Results on the Zymo mock community dataset 56

5.2. Discussion . 58

6. Conclusion 59

Bibliography 61

List of Figures 63

List of Tables 66

v

1. Introduction

Microbes are microscopic organisms composed of either a single cell, multiple cells or

cell clusters. The most common types include viruses, bacteria, protozoa, and fungi.

These microorganisms live in almost every part of the biosphere: in the soil, deserts,

the ocean floor, high in the atmosphere, and deep within the Earth, thus adapting to

most conditions - including extremes such as very high or cold temperatures, high

pressure or even high radiation environments.

Microbes interact with human culture in many ways. The human body is home

to millions of microorganisms in the normal body flora, but some microbes are also

pathogens responsible for infectious diseases. Outside of the body, microbes are a

contributor to treating sewage, producing enzymes and fuel, fermenting various foods

(e.g. beer or wine), and much more.

Studying microbial genomes helps to better understand their biological compo-

nents and how their genetic configuration contributes to their distinct characteristics.

The field of microbial genetics has advanced tremendously with DNA sequencing, the

process of determining the order of nucleotides in a DNA fragment. First proposed by

Frederick Sanger in 1977, sequencing technology has since gone through many itera-

tions of improvement, where the ideal sequencer would be highly accurate, with long

read length (no gaps in the genome), low cost, and high throughput.

Nanopore sequencing is a third generation sequencing technology promising very

long reads, high throughput, and low material requirement. A nanopore is essentially

a very small (<1nm in width) hole through which DNA strands are driven by elec-

trophoresis. As each base molecule is driven through the nanopore, it induces a differ-

ent change in current which is then used to identify that particular molecule. These raw

current signals outputted by the sequencer are the target of this work. The challenge is

that the DNA strands move very rapidly through the nanopore which makes the signals

prone to background noise.

Working with sequences, such as the raw nanopore signals, is one of the harder

challenges in machine learning and data science industries. Real-life sequences are un-

1

predictable, containing complex temporal dependencies, where genomes as sequences

are particularly complicated in their nature. When considering the added noise, one

can easily see why this problem is especially hard. Another thing to keep in mind that

a DNA strand is formed by only four types of nucleotides whose order is what deter-

mines the genetic code, so there is not much diversity in the type of molecule passing

through the nanopore and thus inducing a change in current.

The goal of this thesis is to research different methods for finding a compressed sig-

nal representation for a DNA fragment of a microbe. The compressed representation

should contain the most important features of the fragment so that different microbial

species can be distinguished according to their representations. The end objective is

to be able to cluster different DNA fragment signals according to their species and

therefore be able to easily classify a new, unseen, and unknown DNA fragment. If

the method is good enough, the compressed representations could be used for differ-

ent purposes as they would contain the most important information from the genome,

while being easier to work with because of their reduced dimensionality.

In this thesis, chapter 2 gives an introduction to the dataset and the preprocessing

flow. Chapter 3 will give a theoretical overview of methods and architectures used

in this work, then introduce the exact models used, visualization and classification

techniques, and lastly a brief description of the technical stack. Chapter 4 presents and

discusses the results. Chapter 5 discusses the evaluation on true data, with a conclusion

in chapter 6.

2

2. Dataset

The starting point for this work are genomes from 6 different species:

• Escherichia coli

• Bacillus anthracis

• Klebsiella pneumoniae

• Pantonea agglomerans

• Pseudomonas koreensis

• Yersinia pestis

Original genome lengths are shown in table 2.1. During nanopore sequencing, each

nucleotide in the genome produces some change in current so the raw signal is even

longer.

Table 2.1: Original Genome Lengths

Species Total Length (bp)

Escherichia coli 4,641,652

Bacillus anthracis 5,227,293

Klebsiella pneumoniae 5,682,322

Pantonea agglomerans 5,115,241

Pseudomonas koreensis 6,301,761

Yersinia pestis 4,829,855

These reference genomes are long, complex, and very similar to each other. The

similarity between genomes is higher when organisms are closer in a phylogenetic tree.

The actual similarity of prokaryotic genomes can be calculated using the Average Nu-

cleotide Identity (ANI) score. Given two genomes, the ANI score estimates nucleotide

identity between their coding regions. For example, ANI score ≥ 95% is usually a

3

boundary for same species genomes. ANI scores calculated with ORTHOAni (Lee

et al. (2016)) 1, are shown in table 2.2.

Table 2.2: Average Nucleotide Identity scores

Bacillus

anthracis
62.2472%

Klebsiella

pneumoniae
78.3507% 61.9479%

Pantonea

agglomerans
73.4330% 61.7770% 74.0607%

Pseudomonas

koreensis
66.4474% 62.5534% 67.3194% 66.5931%

Yersinia

pestis
71.1529% 62.885% 72.2456% 71.7984% 65.2331%

Escherichia

coli

Bacillus

anthracis

Klebsiella

pneumoniae

Pantonea

agglomerans

Pseudomonas

koreensis

2.1. Preprocessing

Each reference genome is split into smaller sections, each containing around 10k nu-

cleotides. The sections are generated using a sliding window with an offset of 1000.

The sliding window concept (on a smaller scale). is shown in figure 2.1 .

Using this technique, for a genome of approximately 5 million base pairs long

around 5k sections are generated. Once the sections are generated, they are trans-

formed into raw electrical current signals using DeepSimulator.

This process is reversed from what happens in practice, where raw nanopore signals

are the starting point, but this is a way of generating an artificial dataset to work on.

2.1.1. Raw Signals

A tool called DeepSimulator by Li et al. (2018) is used to reproduce the raw current

signals. While most existing simulators simulate the reads based on statistical patterns

of data, DeepSimulator imitates the flow of the nanopore sequencing procedure.

1https://www.ezbiocloud.net/tools/orthoani

4

2.1.2. Reducing dimensionality

After retrieving the signals from DeepSimulator, the dimensionality of data is large. To

reduce, the input samples are split again into fragments of 400 timesteps (of the raw

signal) which is equivalent to 40-50 base pairs of the reference genome. This division

is arbitrary - fragment length is chosen so that the end result is as representative as

possible, but of lower dimensionality.

The fragment of length 400 is then represented by 4 different statistical coefficients:

2 measures of central tendency - the mean and the median:

Mean =
1

n

n
∑

i=1

xi =
x1 + x2 + · · ·+ xn

n
(2.1)

Median =







(N+1)th

2
term; when n is even,

N
th

2
term+(N

2
+1)th term

2
; when n is odd

(2.2)

and 2 measures of variability - the standard deviation and the interquartile range:

Standard Deviation =

√

√

√

√

1

N − 1

N
∑

i=1

(xi − x̄)2 (2.3)

Interquartile Range = Q3 −Q1 = 3(
N + 1

4
)th term− (

N + 1

4
)th term (2.4)

This way, a fragment of the sample of length 400 is mapped to 4 statistics, so the

starting input sample goes from shape (timesteps, 1) to (timesteps/400, 4).

The dimensionality of the dataset is thus significantly reduced while the 4 descrip-

tive statistics coefficients hopefully still retain enough information about the features

of the signal.

The pipeline for 20k timesteps can be seen in figures 3.1 and 2.4.

This dataset is split evenly between the training/validation/test in the ratio 80% /

10% / 10 %.

6

x′ =
x− µcolumn

σcolumn

(2.6)

where x′ is the normalized value of original value x.

Another way of normalizing is by min-max scaling, calculating the max and min

of each column and computing

x′ =
x− xmin

xmax − xmin

(2.7)

Both of these ways are used in this work, each for an appropriate network imple-

mentation.

2.1.4. Summary

To sum up, table 2.3 shows the total number of input samples for each class in the

dataset and the percentage of samples belonging to that class.

Table 2.3: Sample distribution through classes

Species Total samples Percentage in dataset

ecoli 4632 14.64%

bacillus anthracis 5218 16.49%

klebsiella pneumoniae 5636 17.81%

pantonea agglomerans 5078 16.04 %

pseudomonas koreensis 6292 19.88 %

yersinia pestis 4792 15.14 %

The ideal case would be 16.67% (1
6
) of samples for each class which would mean

a perfectly balanced dataset. This dataset is not exactly perfectly balanced, but is quite

close to it - no class deviates from the 16.67% for more than 3%.

2.2. Zymo mock community dataset

Once a successful architecture is found, it will be evaluated on actual signal data from

the Zymo mock community publicly available dataset2 by Loman et al. (2018).

The ZymoBIOMICS Microbial Community Standard is the first commercially avail-

able standard for studies in metagenomics and microbiomics. Mock community stan-

dards are useful for the development and validation of not just laboratory but software

and bioinformatics methods as well.

2https://github.com/LomanLab/mockcommunity

8

This particular community consists of ten microbial species: eight equally dis-

tributed bacteria (12% each): Escherichia coli, Pseudomonas aeruginosa, Salmonella

enterica, Enterococcus faecalis, Lactobacillus fermentum, Staphylococcus aureus, Lis-

teria monocytogenes and Bacillus subtilis; and two yeasts (each present at 2%): Sac-

charomyces cerevisiae and Cryptococcus neoformans.

The whole dataset consists of:

• 4.23M reads

• 16.59Gb bases

• 4.620bp read length N50.

Since the dimensionality of this raw signal dataset is very large, the evaluation

in the scope of this work will be done on a smaller, manageable part of that dataset.

The dataset is originally given in 43 batches but only reads from the first batch are

processed (around 200k reads).

Similar to many metagenomic samples, the exact species is unknown at the time of

sequencing, meaning that the raw signals from the dataset are not assigned to a specific

class. This posed a new problem since this work requires labelled data.

To mend this problem, Kraken 2 (Wood et al. (2019)) was used as a taxonomic

sequence classification system. Kraken 2 is an improved version of Kraken (originally

presented by Wood and Salzberg (2014)). The classifier maps original k-mers within

the reference to the lowest common ancestor, or LCA, in all existing genomes contain-

ing that particular k-mer. Along with the sequenced Zymo dataset, a Kraken microbial

community database was published publicly as well3. This database was used to clas-

sify the base-called reads which were then cross-referenced with signal files to get

a dataset of classified raw signals. The process is not exact and probably not 100%

accurate since the Kraken and cross-referencing pipeline introduces some space for

unintentional error.

Raw signals from 6 of the 10 species (to match the artificial dataset) were prepro-

cessed in the same manner as the artificial dataset, with 4000 reads chosen from each

species - giving in total 24 000 reads to process.

The evaluation on a smaller scale dataset is still not a real-life scenario but will give

some indication on how well the developed model works.

3https://lomanlab.github.io/mockcommunity/mc_databases.html

9

3. Methods

3.1. Overview

The main objective of this work is to research an appropriate deep architecture that

could generate a compressed representation (encoding) of a given signal. The represen-

tation should be such that different species can be segregated by their representations.

The basic pipeline of this work is shown in figure 3.1.

Figure 3.1: Scheme of the work pipeline. Raw signals go through a preprocessing stage before

they are fed into a model. The model learns signal representations, which are visualized with

tSNE and classified to a microbial species.

After the preprocessing stage described in section 2.1, the signals are fed into the

10

L(in, out) = L(x, g(f(x)) (3.4)

which calculates the difference between input and its reconstruction. Such losses

are e.g. the mean absolute error (also called L1) or the mean squared error:

MAE =
1

n

n
∑

t=1

|et| =
1

n

n
∑

t=1

|int − outt|

MSE =
1

n

n
∑

t=1

e2t =
1

n

n
∑

t=1

(int − outt)
2

(3.5)

The basic architecture is as shown in figure 3.8, but the actual implementation

can vary depending on the use case. An autoencoder could be a simple feed-forward

network, a convolutional network, an LSTM, etc.

Autoencoders are usually restricted to reconstruct the input approximately in order

not to directly duplicate the input signal. This ensures that the compressed encoding

retains only the most significant features of the given data.

Undercomplete autoencoders

The simplest way of preventing the autoencoder to repeat the input as the output is by

constraining the dimensions of the network bottleneck - i.e. constraining the dimension

of the encoding to be less than the dimension of input data.

Unfortunately, in some cases this is still not enough and an autoencoder with

enough capability will be able to learn an identity function. As described by Good-

fellow et al. (2016), one could in theory imagine a powerful autoencoder with a one-

dimensional code where the encoder could learn to represent a training sample xi with

the code i. A decoder could then learn to map those integers back to specific training

examples. Although this most likely will not happen in practice, it is a good illustration

of an autoencoder failing to learn anything useful from the data.

Denoising autoencoders

The basic idea of denoising autoencoders is to train a network which extracts useful

information by changing the reconstruction error.

As already mentioned, autoencoders minimize the function

L(x, g(f(x))) (3.6)

18

The classification decision for sample q can be made with majority voting or dis-

tance weighted voting based on the classes of the nearest neighbours.

Formally, let

D = {(xi, yi), i = 1, ..., nD} (3.16)

be the training dataset of observed data, where the vector xi = (xi1, ..., xip) repre-

sents predictor values and yi denotes class membership.

For a new observation (q, yq) the nearest neighbour x is determined by a distance

metric:

d(q, x) = minid(q,xi) (3.17)

with the distance metric typically (but not exclusively) being the Euclidean dis-

tance:

d (p, q) =

√

√

√

√

n
∑

i=1

(qi − pi)
2

(3.18)

The k-nearest neighbours are selected based on the given distance metric. This

ends the algorithms first stage.

To determine the class of the new observation in the second phase, let K be the set

of k-nearest neighbours of the given sample. Its class is then:

h(q) = argmax
jǫ(0,...,yn)

∑

(xi,yi)ǫK

κ(xi, q)1{yi = j} (3.19)

where κ is the kernel function assigning weights to the neighboring points based on

some measure of distance to the query point. For simple majority voting, this function

always gives 1.

3.5. Technical Stack

The solution is implemented using the PyTorch computational library.

PyTorch is a Python-based scientific computing package with two-fold usage - ten-

sor computation (like NumPy) with GPU acceleration and a deep learning research

platform with maximum flexibility and speed.

As a step further, the PyTorch Lightning library as a high-level PyTorch wrapper

was used for organizing and automating PyTorch code. Lightning organizes the code

25

in 3 categories: research code, engineering code, and non-essential code such as log-

ging. By refactoring to PyTorch Lightning: no flexibility is lost; no more unnecessary

boilerplate code; the code is generalizable and adaptable to any hardware; readability

and reproducibility are improved; advanced logging possibilities.

PyTorch Lightning enables automatic logging to TensorBoard - TensorFlow’s visu-

alisation toolkit, which was heavily used in this work to save experiment parameters,

calculate metrics, plot training graphs, and plot resulting images.

All experiments were done on 2 GPUs.

All of the code is publicly available on GitHub 1.

1https://github.com/mirnabaksa/Masters-Thesis

26

model state just before the point of overfitting to get the best results. Some parameters

were kept constant across all experiments as shown in table 4.1.

Table 4.1: Constant Parameters

Constants

optimizer adam

reconstruction loss L1

k
√

test samples

Adam (Adaptive Moment Estimation) is an adaptive learning rate optimization al-

gorithm which computes individual learning rates for different parameters. Empiri-

cally, Adam performs well in practice and compares favourably to similar stochastic

optimization methods.

The value of k listed in table 4.1 refers to the hyperparameter of the k-NN clas-

sification algorithm. Finding the right value of k is not trivial - a large value of k is

computationally expensive, whereas the noise will have a higher influence on the final

result with a small k. The convention is to start out at k =
√
N , where N is the total

number of samples, and optimize from there. Since the emphasis of this work is more

on the models, k was kept constant at that value.

Overview

A short summary for context before presenting the results is that autoencoder architec-

tures (both convolutional and LSTM, undercomplete, denoising, and variational) did

not give satisfactory results.

Even when the signal was more or less reconstructed, the learned signal encodings

did not manage to detect any clusters of data. The architectures were tested out on

dummy datasets as well (e.g. with classes of very similar sine and cosine waves) and

achieved successful separation of clusters there.

Triplet networks were much more successful in learning meaningful signal encod-

ings.

28

Table 4.8: Variational Convolutional Autoencoder structure

Layer name No. of filters Kernel size Activation

encoder

Conv1D 16 3 ReLU

Conv1D 32 3 ReLU

Conv1D 64 7 ReLU

Linear (mean) 32

Linea(stdev) 32

decoder

Conv Transpose 1D 32 7 ReLU

Conv Transpose 1D 64 3 ReLU

Conv Transpose 1D 4 3 ReLU

Linear timesteps Tanh

4 and 6 classes

Similar to the experiments with no success on 2 classes, experiments with 4 and 6

classes did not do any better.

Discussion

Some architectures manage to reconstruct the signal better than others, but no archi-

tecture was successful in clustering the encodings.

The undercomplete autoencoder (figure 4.3) did reconstruct a general outline of the

signal, with some regions better covered than others. Where it failed is reconstructing

peaks and extremes in the signal, keeping a rather flat trajectory. No clusters were

separated, even when training with a larger encoding size.

The output of the denoising autoencoder in figure 4.5 is quite interesting, as two

distinct regions are reconstructed very well while others are not reconstructed at all

(the flat sections). This pattern of some regions being covered better was occurring

again and again through the experiments. No clusters are found.

The variational autoencoder had the worst performance, with the reconstructed sig-

nal only occasionally following the target sequence. A guess as to why its performance

is bad could be that the underlying distribution of the raw signal too complex to be ap-

proximated.

34

Table 4.12: Denoising LSTM Autoencoder experiment on 6 classes

Parameters

epochs 1500

encoding size 200

(a) Parameters

Metrics

accuracy 0.31

(b) Metrics

Discussion

LSTM Autoencoders performed similarly to Convolutional Autoencoders.

The Undercomplete LSTM Autoencoder was reconstructing a very general outline

of the original signal. The reconstruction followed some peaks, but the model was

trained for a while with no further improvements.

The output of the Denoising LSTM Autoencoder again reconstructs two regions

better than the rest of the signal, which is interesting considering the architecture is

different (in comparison to the Convolutional Autoencoder).

The Variational LSTM Autoencoder performed worse by far (thus no results in-

cluded above), with the reconstruction being almost a flat line.

4.1.3. Autoencoder Performance Summary

A fact to remember when thinking about autoencoder results is that the reconstruction

plots above show only 1
4

of the data fed into the autoencoder. The plots show only the

means signal, while the autoencoder was working on reconstructing medians, standard

deviations, and interquartile ranges as well.

Another thing to think about is the reconstruction versus compression autoencoder

usage. The goal of this work was not just to reconstruct the signal, but achieve gener-

alized compression - i.e. to be able to generate a compressed encoding of an unseen

sample. As seen in result images, the compressed encodings the autoencoders learned

were not successful in separating clusters of data even though in some cases the au-

toencoder did loosely manage to reconstruct some parts of the input signal. However,

learning encodings that cluster the data is not the actual job of the autoencoder as it is

trained on pure reconstruction loss.

All in all, the autoencoder performance was not satisfactory.

40

4.2. Triplet Networks

Dataset

Dataset sizes can be seen in table 4.13.

Table 4.13: Triplet dataset sizes

2 classes 4 classes 6 classes

Training set 16 758 100 548 253 180

Validation set 2 184 12 474 31 650

Test set 1 093 2 080 3 166

These datasets are larger in size than the ones in autoencoder networks (table 4.2)

because they are formed of triplets, as shown in algorithm 1.

Triplets are formed in a way where for each input sample, n samples from a class

different from the class of the sample are randomly chosen from the dataset. Those

samples are used as the negative part of the triplet, while the positive samples are

randomly chosen from the same class as the input sample.

Algorithm 1 Triplet formation

for sample, label in dataset do

for other in classes do

if label is not other then

positive← n samples of class label

negative← n samples of class other

triplets← (n ∗ sample, triplet positive, triplet negative)

add triplet to triplet dataset

end if

end for

end for

Effectively, one input sample yields n∗ (num classes−1) samples, where n is the

desired number of triplets formed from one input sample.

In these experiments, n = 2, so each input sample will yield 2 triplets per class

different from the input sample class. The exception is the test set, for which only the

anchor is used for evaluation, so no additional samples are generated (n = 1).

41

Metrics

Since triplet network results are much better than the autoencoder results, more metrics

were calculated for these experiments.

The metrics include precision, recall, F1 score, and accuracy as usual.

Precision is the ratio of correctly predicted positive observations to the total pre-

dicted positive observations:

precision =
true positive

true positive+ false positive
(4.1)

Recall (sensitivity) is the proportion of correctly classified positive observations to

the all observations in the actual class:

recall =
true positive

true positive+ false negative
(4.2)

F1 score is the weighted average (otherwise named the harmonic mean) of preci-

sion and recall:

F1 score = 2 ∗ precision ∗ recall

precision+ recall
(4.3)

Accuracy is the proportion of correctly classified samples to all samples:

accuracy =
true positive+ true negative

positive+ negative
(4.4)

In a multi-class scenario such as this one, the metrics are calculated for each class

and then averaged (so-called macro averaging).

These metrics are more useful in scenarios of imbalanced classification - with one

category representing the majority of data points, such as e.g. the rate of a rare dis-

ease in a population. Still, it can be convenient to have more information about the

performance of a model.

42

learned data encoding.

The convolutional triplet networks managed to detect some data clustering, much

more successfully than autoencoders. The 2-class experiment was quite successful

with a nice division between the classes. The 4-class experiment did separate some

clusters more successfully than others, but there are still opportunities for further en-

hancements. The same goes for the 6-class experiment.

What is interesting to note is the snake-like shape of the visualized data, more

visible in 4-class and 6-class experiments. This happens because the model tries to

separate the points according to a fixed margin, and this shape is mathematically more

optimal for a multi-class problem.

47

Table 4.20: LSTM Triplet Network experiment on 6 classes

Parameters

epochs 200 encoding size 128

layers 2 dropout 0.5

(a) Parameters

Metrics

precision 0.6541 recall 0.666

F1 0.6551 accuracy 0.683

(b) Metrics

Discussion

These experiments were by far most successful.

On the 2-class experiment the clusters are very distinctly separated. The encoding

size is quite low which is good - only 24 units, whereas the dimensionality of input

data is ∼ 1000.

The 4-class experiment shows two more or less finely divided clusters with two

classes still somewhat mixed together. This is still a valid result considering the di-

mensionality of the problem.

Similar results on the 6-class experiment - 3 distinct clusters with 3 classes still

mixed up in the test dataset.

4.2.3. Further Experiments

Since the LSTM Triplet Network had good results, further experiments were made in

an attempt to enhance its performance even more. All these experiments were done on

a 6 class scenario.

Signal Energy

To describe the original signal better, an additional data feature was calculated during

preprocessing. This feature was signal energy, which for a discrete-time signal is

defined as

Es =
∞
∑

n=−∞

|x(n)|2 (4.5)

By using this additional feature, the data is now in shape (timesteps/400, 5).

To get as comparable results as possible, parameters for the experiment with added

signal energy were kept the same as the experiment with no added energy - as in table

4.20a.

51

Table 4.22: LSTM Triplet Network experiment results on 6 classes, with different starting

sequence length

Parameters

epochs 75

encoding size 64

(a) Parameters

Metric 10k 20k 50k

precision 0.6168 0.7477 0.8322

recall 0.6336 0.7375 0.8309

F1 0.6199 0.7397 0.8306

accuracy 0.6583 0.7417 0.8375

(b) Metric comparison

By refactoring from 10k to 20k sequence length, model accuracy improved by

almost 10%, with more prominent clustering in the resulting images. Refactoring from

20k to 50k did not improve accuracy proportionally to the increased length, with the

accuracy again improving by a little less than 10%. Resulting clusters were comparably

good as well.

The reason for model improvement when trained on longer sequences is simply

that the model has more information about the sequence itself. Moreover, since the

sliding window offset is kept constant at 1000 bp and the window length is increased,

the sequence overlap increases as well. The model then has more context for each

preprocessed sequence and how it relates to other sequences.

What needs to be emphasized here is that prolonging the sequences is feasible only

in the artificial dataset preprocessing. This step was done in order to simulate the actual

reads - when the model is trained on real data one has no influence on read lengths.

Time and Memory Usage

An interesting comparison of time and memory usages can be done along with this

experiment. Table 4.23 shows total training time for 75 epochs, and total size of the

dataset in memory for different sequence lengths.

One should note that this is a dataset of reduced size in comparison to other exper-

iments.

Table 4.23: Comparison of time and memory usage

Metric 10k 20k 50k

total training time 54m 1h 47m 3h 15m

total dataset size 128.5 MB 256.2 MB 641.1 MB

54

As expected, the training time and memory usage increase proportionally with the

increase of sequence lengths. Increasing sequence length will improve performance,

but with the cost of more resource usage - there needs to be a compromise in order to

get best performance while still being able to work with the dataset.

Another thing to note here is that the dataset consists of only 6 microbial species,

whereas an actual, real-life scenario would include tens of thousands of different mi-

crobes.

4.2.4. Triplet Networks Performance Summary

Triplet networks in general were much more successful than autoencoders. This is only

logical since triplet networks learn directly on signal encodings - where autoencoders

tried to simply reconstruct a given input, triplet networks worked on actually separating

the encodings of different classes.

In terms of the comparison of convolutional and LSTM architectures, the results are

as expected - LSTM networks performed better. LSTMs were designed for problems

like these - long sequences with important data potentially multiple timesteps apart.

This is why LSTMs were usually applied to sequence modelling problems, while con-

volutional networks work better with images where the entirety of an input sample is

from a fixed point in time.

55

6. Conclusion

The main focus of this work is on nanopore raw signals. A raw signal in nanopore

sequencing is generated when a DNA strand is driven through a nano-scale hole, where

each nucleotide induces a change in current when passing through. The generated

signals are not even close to perfect, due to the background noise of the sequencing

technology and the pure nature of the problem. The goal is to extract relevant features

from these signals so that one could differ between microbial species based on that

information.

After preprocessing the dataset, this work tests multiple types of models in hope

of finding the best compressed signal representations which would contain relevant in-

formation about the given signal. After training a model, its success is tested by using

a classifier on a test dataset of unseen samples. The models include autoencoders (un-

dercomplete, denoising, and variational) and triplet networks, both using convolutional

and LSTM architectures.

Of the architectures specified above, LSTM triplet networks achieved the best re-

sults and were most successful in identifying clusters of embedded representations.

The LSTM triplet architecture was therefore evaluated further on actual signal data

from the Zymo mock community publicly available dataset.

Future work

As far as future work goes, autoencoders can be researched further to see if the problem

was in the architecture itself or the dataset is simply too complicated for the autoen-

coder to manage.

Another improvement could be to improve the loss function of the autoencoder

- instead of trying to simply duplicate the signal, an additional term could be added

which would regulate how close the actual signal encodings of the same class are

to each other. This would potentially nudge the autoencoder into learning features

specific to each microbe.

59

If an autoencoder gives solid signal reconstruction but separates the compressed

signals poorly, another idea is to try to separate autoencoder encodings further using

triplet loss - essentially combining the two network architectural concepts used in this

work.

As already mentioned, a possible improvement on both autoencoders and triplet

networks is a different combination of statistical coefficients used to describe the sig-

nals. Instead of using generic descriptive coefficients, signal-specific measures such as

signal energy, amplitude or even shifting the signal to the frequency domain could be

useful to research.

60

BIBLIOGRAPHY

Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from the

data generating distribution. 2012.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning (Adaptive Com-

putation and Machine Learning. MIT Press, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-

tation, 9:1735–80, 12 1997.

Elad Hoffer and Nir Ailon. Deep metric learning using triplet network, 2014.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backprop-

agation and approximate inference in deep generative models, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.

Imchang Lee, Yeong Ouk Kim, Sang-Cheol Park, and Jongsik Chun. Orthoani: An

improved algorithm and software for calculating average nucleotide identity. Inter-

national Journal of Systematic and Evolutionary Microbiology, 66(2):1100–1103,

2016. ISSN 1466-5026.

Yu Li, Renmin Han, Chongwei Bi, Mo Li, Sheng Wang, and Xin Gao. Deepsimulator:

a deep simulator for nanopore sequencing. Bioinformatics, 34(17):2899–2908, 04

2018. ISSN 1367-4803.

Nicholas J. Loman, Samuel M. Nicholls, Joshua C. Quick, and Shuiquan Tang. Ultra-

deep, long-read nanopore sequencing of mock microbial community standards.

bioRxiv, 2018.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embed-

ding for face recognition and clustering. 2015 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Jun 2015.

61

M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE Trans-

actions on Signal Processing, 45(11):2673–2681, 1997.

Laurens Van der Maaten and Geoffrey Hinton. Viualizing data using t-sne. Journal of

Machine Learning Research, 9:2579–2605, 11 2008.

Derrick Wood and Steven Salzberg. Kraken: Ultrafast metagenomic sequence classi-

fication using exact alignment. Genome biology, 15, 2014.

Derrick Wood, Jennifer Lu, and Ben Langmead. Improved metagenomic analysis with

kraken 2. Genome Biology, 20, 2019.

62

LIST OF FIGURES

2.1. Sliding window concept with window length 25 and offset 10 5

2.2. Example of the first 1000 timesteps of a signal generated by DeepSim-

ulator . 5

2.3. Raw signal example . 7

2.4. Preprocessed signal example. A raw signal is first split into fragments

of 400 timesteps which are then each mapped to 4 statistics - mean,

median, standard deviation, interquartile range. 7

3.1. Scheme of the work pipeline. Raw signals go through a preprocess-

ing stage before they are fed into a model. The model learns signal

representations, which are visualized with tSNE and classified to a mi-

crobial species. 10

3.2. Overview of models used in this work 11

3.3. Simple Artificial Neural Network architecture with an input layer, one

hidden layer and an output layer . 12

3.4. Effect of applying the sigmoid activation function multiple times . . . 13

3.5. Cross-correlation (convolution) applied to a 1D grid 14

3.6. Recurrent Neural Network architecture 15

3.7. LSTM cell scheme . 16

3.8. Autoencoder architecture, consisting of an encoder which learns com-

pressed representations, and a decoder which learns to map the repre-

sentation back to the original output 17

3.9. Hidden variable z generating an observation x 19

3.10. Using known observations x to estimate the hidden variable z 20

3.11. Variational Autoencoder architecture: p(x|z) is approximated with a

distribution q(z|x) . 20

63

3.12. Variational Autoencoder implementation: encoder maps the input into

µ and σ in latent space. A similar point z is sampled from N (µ, σ),

and fed to the decoder . 21

3.13. The effect of the reparametrization trick on random sampling: intro-

ducing a new parameter ǫ randomly sampled from a unit Gaussian en-

ables random sampling of z . 22

3.14. Triplet learning: positive samples are pushed closer to the anchor and

negative samples further from it . 23

3.15. K-nearest neighbors algorithm idea in 2D feature space: the class of q

is determined by the classes of k nearest neighbors 24

4.1. Test set representations before training, visualized with t-SNE 27

4.2. Input sequence with added Gaussian noise and target sequence 29

4.3. Undercomplete Convolutional Autoencoder output on 2 classes 30

4.4. Undercomplete Convolutional Autoencoder results on 2 classes, visu-

alized with t-SNE . 30

4.5. Denoising Convolutional Autoencoder output on 4 classes 31

4.6. Denoising Convolutional Autoencoder results on 4 classes, visualized

with t-SNE . 32

4.7. Variational Convolutional Autoencoder output on 2 classes 33

4.8. Variational Convolutional Autoencoder results on 2 classes, visualized

with t-SNE . 33

4.9. LSTM Autoencoder Structure: after the input is fed through the en-

coder, its last hidden state is repeated timestep times and fed to the

decoder . 35

4.10. Undercomplete LSTM Autoencoder output on 2 classes 36

4.11. Undercomplete LSTM Autoencoder results on 2 classes, visualized

with t-SNE . 36

4.12. Undercomplete LSTM Autoencoder output on 4 classes 37

4.13. Undercomplete LSTM Autoencoder results on 4 classes, visualized

with t-SNE . 37

4.14. Denoising LSTM Autoencoder output on 2 classes 38

4.15. Denoising LSTM Autoencoder results on 2 classes, visualized with

t-SNE . 38

4.16. Denoising LSTM Autoencoder output on 6 classes 39

64

4.17. Denoising LSTM Autoencoder results on 6 classes, visualized with

t-SNE . 39

4.18. Convolutional Triplet Network Structure on 2 classes 43

4.19. Convolutional Triplet Network results on 2 classes, visualized with t-

SNE . 43

4.20. Convolutional Triplet Network Structure on 4 classes 44

4.21. Convolutional Triplet Network results on 4 classes, visualized with t-

SNE . 44

4.22. Convolutional Triplet Network results on 6 classes, visualized with t-

SNE . 45

4.23. Convolutional Triplet Network Structure on 6 classes 46

4.24. Triplet LSTM Network Structure: input is fed into a LSTM layer, its

hidden state at the last timestep is the signal encoding 48

4.25. Triplet LSTM Network results on 2 classes, visualized with t-SNE . . 49

4.26. Triplet LSTM Network results on 4 classes, visualized with t-SNE . . 50

4.27. Triplet LSTM Network results on 6 classes, visualized with t-SNE . . 50

4.28. LSTM Triplet Network experiment results on 6 classes with and with-

out added signal energy, visualized with t-SNE 52

4.29. Test set results on experiment with longer sequences, visualized with

t-SNE . 53

5.1. Zymo dataset Triplet LSTM Network results on 2 classes, visualized

with t-SNE . 56

5.2. Zymo dataset Triplet LSTM Network results on 4 classes, visualized

with t-SNE . 57

5.3. Zymo dataset Triplet LSTM Network results on 6 classes, visualized

with t-SNE . 58

65

LIST OF TABLES

2.1. Original Genome Lengths . 3

2.2. Average Nucleotide Identity scores 4

2.3. Sample distribution through classes 8

4.1. Constant Parameters . 28

4.2. Autoencoder dataset sizes . 29

4.3. Undercomplete Convolutional Autoencoder experiment on 2 classes . 31

4.4. Undercomplete Convolutional Autoencoder structure 31

4.5. Denoising Convolutional Autoencoder experiment on 4 classes, visu-

alized with t-SNE . 31

4.6. Denoising Convolutional Autoencoder structure 32

4.7. Variational Convolutional Autoencoder experiment on 2 classes . . . 33

4.8. Variational Convolutional Autoencoder structure 34

4.9. Undercomplete LSTM Autoencoder experiment on 2 classes 36

4.10. Undercomplete LSTM Autoencoder experiment on 4 classes 37

4.11. Denoising LSTM Autoencoder experiment on 2 classes 39

4.12. Denoising LSTM Autoencoder experiment on 6 classes 40

4.13. Triplet dataset sizes . 41

4.14. Convolutional Triplet Network experiment on 2 classes 44

4.15. Convolutional Triplet Network experiment on 4 classes 45

4.16. Convolutional Triplet Network experiment on 6 classes 45

4.17. LSTM Constant Parameters . 48

4.18. LSTM Triplet Network experiment on 2 classes 49

4.19. LSTM Triplet Network experiment on 4 classes 49

4.20. LSTM Triplet Network experiment on 6 classes 51

4.21. LSTM Triplet Network experiment metrics on 6 classes, with and with-

out signal energy . 52

66

4.22. LSTM Triplet Network experiment results on 6 classes, with different

starting sequence length . 54

4.23. Comparison of time and memory usage 54

5.1. Zymo dataset 2 class Triplet LSTM Network experiment 56

5.2. Zymo dataset 4 class Triplet LSTM Network experiment 57

5.3. Zymo dataset 6 class Triplet LSTM Network experiment 58

67

Microbe Detection Using Deep Learning

Abstract

Microbes, omnipresent microorganisms invisible to the naked eye, impact many

functions in the human body. The ability to detect and classify them is essential in

order to discover diseases, prescribe medication, and keep a healthy lifestyle. The goal

of this thesis is to develop a method for microbe detection based on a deep learning

architecture. The architecture is designed to find suitable representations of signals

corresponding to sequenced microbe DNA fragments. After finding the signal repre-

sentations, an appropriate distance metric is used to separate different species in the

latent space. In the end, reads are classified using a suitable classifier.

Keywords: bioinformatics, deep learning, triplet loss, autoencoder, classification

Prepoznavanje mikroba uporabom dubokog učenja

Sažetak

Mikrobi, sveprisutni mikroorganizmi nevidljivi golom oku, utječu na mnogo funkcija

u ljudskom tijelu. Mogućnost njihovog prepoznavanja i klasificiranja je važna kod

otkrivanja bolesti, prepisivanja lijekova i održavanja zdravog načina života. Cilj ovog

rada je razvoj metode za detekciju mikroba koristeći metode dubokog učenja. Razvi-

jena metoda pronalazi odgovarajuće reprezentacije signala očitanih za dani DNA frag-

ment mikroba. Nakon pronalaska reprezentacija signala, odgovarajuća metrika je ko-

rištena za razdvajanje različitih vrsta u latentnom prostoru. U konačnici, očitanja su

klasificirana koristeći prikladni klasifikacijski model.

Ključne riječi: bioinformatika, duboko učenje, trojni gubitak, autoenkoder, klasi-

fikacija

