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Abstract - In natural language processing, most problems
can be interpreted as text classification tasks, which makes
this type of task a central one. A natural subdivision of more
complex types of text classification can be made according to
whether the classification is multilabel or multiclass, where
both of these can be tackled with either a multiclass classifier
or with a combination of several binary classifiers. An
example of the problem which offers a natural way of
comparing multiclass and binary classification on the same
data, which makes the results comparable, is a classification
of text author MBTI personality type. The dataset used is
PersonalityCafe MBTI. We focus our comparison on
structural hyperparameters, which are the hyperparameters
pertaining to network structure. Structural hyperparameters
are necessary for specifying the network itself, which makes
them a primary concern in its construction. The
hyperparameters investigated in this paper are the number
of hidden layers and layer size. Through a number of
experiments, we demonstrate the choice of hyperparameters

and conclude with general hyperparameter selection
recommendations based on our results.
Keywords - natural language processing; LSTM;

structural hyperparameters; multiclass classification; binary
classification.

I. INTRODUCTION

Deep neural networks can discover representations needed
for detection or classification on multiple levels, starting
from simple raw input to higher and more abstract level [1]
An important application of deep neural networks can be
found in natural language processing (NLP), which is an
interdisciplinary field of computer science, artificial
intelligence, and linguistics, based on tools and algorithms
for understanding and processing naturally spoken and
written language [3].

Long Short-Term Memory networks (LSTM
networks) [11] are a type of recurrent neural network
capable of learning long-term dependencies, initially
invented to address the vanishing gradient problem [8].
The LSTM networks have a structure of linked memory
cell blocks, where the information is stored. The memory
cell has a recurrent connection to the previous time step,
which is multiplicatively gated by another cell that learns
to decide when to clear the content of the memory [4].

Problems in NLP, which can be interpreted as text
classification tasks, have been successfully addressed with
LSTM networks. A natural subdivision of more complex
text classification tasks can be made according to whether
the classification is multilabel or multiclass. Multiclass
text classification can be tackled with either a multiclass
classifier [14] or with a combination of several binary
classifiers [12]. An example of the problem which offers a
natural way of comparing multiclass and binary
classification on the same data, which makes the results
comparable, is a classification of text author MBTI
personality type.

The primary motivation behind this paper is to make a
clear comparison and guideline for hyperparameter
selection based on a few experiments on the same dataset.
This motivation has been inspired by the complexity of the
neural networks, where a significant number of elements
can affect the result of training and their ability to classify
data correctly. We focus our comparison on structural
hyperparameters, which are the hyperparameters
pertaining to network structure. Structural
hyperparameters are necessary for specifying the network
itself, which makes them a primary concern in its
construction. The hyperparameters considered in our paper
are the number of hidden layers and layer size.

We approach the personality type -classification
problem in two different ways: through multiclass and
binary classification. Through several experiments, we
demonstrate the choice of hyperparameters and conclude
with general hyperparameter selection recommendations
based on our results. The obtained results will be used as a
basis for later hyperparameter optimization to achieve
higher accuracy in personality type prediction.

The paper is organized as follows: Section II describes
text processing referring to the chosen dataset; Section I1I
presents experimental setup with the emphasis on
hyperparameters; The results and discussion for multiclass
and binary classification are shown in section IV; and,
section V concludes this paper.

1L TEXT PREPROCESSING

Before building an LSTM neural network model and
performing hyperparameter analysis, we preprocess the
data in the standard way.
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A. Dataset

The dataset used for this research is an MBTI Type dataset
from Kaggle' which consists of 8.675 rows containing (a)
textual posts from PersonalityCafe forum and (b) labels,
which are MBTI personality types of their respective
authors. Each author has an average of 50 posts. An MBTI
dataset was selected because MBTI labels offer a rather
complex yet well-defined multiclass text classification
task, with 16 overlapping classes, which can also be
broken down to binary classifications in a very natural way
with four well-defined classifiers: E/I, N/S, T/F, P/J.
Because the tasks are equally well defined for both the
multiclass and binary setting, MBTI datasets are an
excellent domain for comparing these two approaches. For
more on the theory of MBTI personality types we refer the
reader to [2]. The dataset used is quite large but
imbalanced. Since our research does not focus on
surpassing a benchmark but rather on hyperparameter
evaluation of two approaches, no measure was taken to
correct the imbalance as it would not influence the results
of our analysis.

B. Word Embeddings

Data from the dataset was prepared and cleaned by
removing links, numbers, punctuation, and special
characters. Contractions were expanded to their full form.
All uppercase characters were converted to lowercase.
After the tokenization of sentences, where they were
transformed into a list of words, stop words and one-letter
words were removed. Since the posts contain a lot of
MBTI type code words, they were also removed from the
text, to prevent unnecessary noise in the text data.
Lemmatization was performed using
WordNetLemmatizer. The text was finally converted into
word embeddings, using the Glove 100-dimensional word,
pretrained on Twitter corpus of 2 billion tweets [9] .

I11. EXPERIMENT SETUP

The focus of this research is to compare different LSTM
models based on structural hyperparameters.

Hyperparameters are parameters that are not learned
during training but must be defined before training. As
such, research in hyperparameters forms the only viable
basis for selecting good hyperparameters. For the purpose
of this paper, we will provisionally define two non-disjoint
classes of hyperparameters. Backpropagation
hyperparameters are hyperparameters controlling the
optimization of the network parameters. These are, among
others, regularization, learning rate, number of epochs,
momentum, etc. In this paper, we are interested in a second
class, namely the structural hyperparameters.

As the name suggests, these are parameters governing
the neural network structure. The structural parameters we
explore are the hidden layer size and the number of hidden
layers.

! https://www.kaggle.com/datasnaek/mbti-type

Structural hyperparameters can be considered the
dominant hyperparameters in learning since they are a
necessary part of creating internal representations in neural
networks, as opposed to optional parameters such as
regularization.

In our experiments, we trained models of varying
numbers of hidden layers and hidden layer size, which we
will discuss below. To keep the comparison clear, we have
opted not to use any regularization. Other necessary (non-
structural) hyperparameters were kept invariant in all
models: sigmoid activation for binary and softmax
activation for multiclass classification, the batch size was
set to 64, the number of epochs to 30, the optimizer was
ADAM [10] with the learning rate of 0.001, and no
regularization or dropout [5] was used. We have trained all
models with both cross-entropy loss (C-E) and mean
squared error loss (MSE). Modifying these parameters
might improve results even further, but this will be left as
a topic for future research. The architecture of the
individual layers was Keras/Tensorflow CuDNNLSTM?,
trained on CUDA 10.1 GPUs.

By fixing the dataset and epochs, we deliberately limit
the hyperparameters in question and focus only on the
combination of layer size and number of neurons per layer
(with two different loss functions), which to the best of our
knowledge was not systematically explored for multi-
layered LSTM networks with textual embeddings for
multiclass text-based document classification. Results are
evaluated by comparing multiple metrics, such as
accuracy, Fl-score, precision, recall, confusion matrix.

Iv. RESULTS

The results we obtained for multiclass text classification
from the experiments conducted, in terms of accuracy,
recall, precision, and F1 score are presented in TABLE I
(we have bolded the best three results per column).

The results show that when it comes to accuracy, deeper
neural networks tend to give better results. When looking
at the average macro precision, recall, and F1 score,
networks with 3 layers give similar or slightly worse
results than the ones with 1 or 2 layers.

When it comes to the number of neurons per layer, in the
networks with a single LSTM layer, a small number of
neurons gives better results. In fact, models with 100, 150
and 500 neurons per layer have shown the signs of
overfitting (Fig.1a), because after around 15th epoch there
is a steep increase in training accuracy and decrease in
training loss, but at the same time the validation accuracy
is not changing or getting slightly worse, and validation
loss is starting to increase as well, as shown in Fig.1b,
Fig.1c and Fig.1d.

2 https://keras.io/
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TABLE I. MULTICLASS CLASSIFICATION RESULTS

Model NL NN Accuracy [%] Precision Recall F1 score Training time [s]
CE MSE CE MSE CE MSE CE MSE CE MSE
modell 1 5 27,419 | 26,114 0,063 0,099 0,095 0,090 0,073 | 0,067 76,73 65,70
model2 1 10 19,201 | 28,111 0,039 0,099 0,060 0,104 0,036 | 0,091 78,80 64,67
model3 1 25 24,347 | 20,891 0,072 0,060 0,085 0,072 0,071 | 0,059 87,13 65,77
model4 1 50 22,657 | 19,201 0,093 0,048 0,080 0,063 0,068 | 0,048 94,49 74,46
model5 1 100 18,049 | 21,736 0,068 0,083 0,070 0,088 0,058 | 0,083 105,49 85,38
model6 1 150 20,046 | 20,046 0,098 0,080 0,114 0,082 0,101 | 0,078 143,38 104,37
model7 1 500 16,820 | 24,654 0,068 0,076 0,071 0,092 0,066 | 0,080 | 297,81 337,24
model8 2 55 25,346 | 26,344 0,053 0,059 0,085 0,087 0,062 | 0,049 148,56 115,01
model9 2 10, 10 24,117 | 19,432 0,070 0,085 0,089 0,060 0,075 | 0,033 153,46 116,14
modell0 2 25,25 28,034 | 27,650 0,106 0,084 0,110 0,101 0,101 | 0,086 164,91 118,16
modell 1 2 50, 50 24,962 | 24,270 0,080 0,068 0,093 0,091 0,078 | 0,071 183,36 127,76
modell2 2 100, 100 24,654 | 21,889 0,136 0,098 0,091 0,091 0,080 | 0,088 | 208,68 145,71
modell3 2 150, 150 19,662 | 18,126 0,081 0,083 0,084 0,082 0,078 | 0,077 | 294,21 196,66
modell4 2 500, 500 20,891 | 24,654 0,083 0,082 0,085 0,093 0,081 | 0,074 | 643,09 805,44
modell5 3 55,5 21,121 | 20,968 0,054 0,042 0,067 0,069 0,036 | 0,050 183,54 158,84
modell6 3 10, 10, 10 27,650 | 27,189 0,048 0,049 0,092 0,088 0,061 | 0,050 | 212,75 161,01
modell7 3 25,25,25 22,657 | 21,813 0,029 0,014 0,066 0,062 0,030 | 0,022 | 234,74 157,26
modell8 3 50, 50, 50 28,725 | 24,424 0,045 0,032 0,093 0,074 0,053 | 0,041 248,66 174,92
modell9 3 100, 100,100 | 29,416 | 29,339 0,037 0,063 0,096 0,097 0,053 | 0,063 | 299,14 209,79
model20 3 150, 150, 150 | 27,727 | 29,032 0,061 0,066 0,095 0,098 0,073 | 0,066 | 416,82 277,95
model21 3 500, 500, 500 | 21,045 | 21,582 0,025 0,073 0,061 0,083 0,027 | 0,073 | 962,75 1245,97
model22 3 25, 50, 100 16,743 | 23,118 0,025 0,035 0,063 0,068 0,022 | 0,035 | 272,30 198,35
model23 3 100, 50, 25 27,573 | 24,424 0,041 0,070 0,088 0,088 0,053 | 0,070 | 276,73 186,82

NL-Number of Layers, NN-Number of Neurons per Layer, CE — Cross Entropy
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Figure 1. Validation cross-entropy loss

Networks with two LSTM layers also do not predict
well with a high number of neurons. Unlike single-layer
LSTM networks, they start to overfit when having 150
or 500 neurons. Networks with three LSTM layers have
shown signs of overfitting when having 500 neurons per
layer. Three-layered LSTMs with five neurons per layer
produced poor results in terms of accuracy, but for the
all layer sizes between 5 and 500 they gave satisfactory
results (especially when considering training
time)When comparing results for MSE loss and Cross-
entropy loss, there is no significant difference. This can
be seen in Fig. 2 and Fig. 3, which show 5-period simple

moving averages (5-SMA) of validation accuracies of
models trained with both cross-entropy (C-E) and mean
squared error (MSE) loss functions. Two interesting
exceptions are models 7 and 14 (one layer with 500
neurons, and two layers with 500 neurons each) where
models trained with mean squared error performed quite
well and have not shown any significant signs of
overfitting, unlike models trained with cross-entropy.

In Fig. 4 both loss functions are shown for model 1,
normalized to the interval between 0 and 1, in order to
give better insight into the difference (or similarity)
between them.
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Milidatin Actutarty = When it comes to average metrics values, they are
very similar and we cannot determine which one is
better, which is unexpected given the fact that cross-
entropy is considered better performing in classification
tasks.
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As already mentioned, multiclass text classification
can be tackled also with a combination of several binary
classifiers. We have trained several models which use
only binary classifiers for comparison with the
multiclass models. Each model consists of four binary
classifiers, one for each of personality preferences:
introversion(I)/extraversion(E), sensing(S)/intuition(N),
thinking(T)/feeling(F) and judging(J)/perceiving(P).
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Across all models, the classificator T/F
outperformed other classificators (I/E, S/N, J/P) which
had problems with overfitting from epoch 5 onwards, as
shown on Fig. 5 for model 8. For this reason, we have
reduced the learning rate from 0.001 to 0.0001. Models
validation Accutacy with a higher number of layers as well as models with a
‘ higher number of neurons per layer showed a better F1
score.

Figure 2. 5-SMA of validation accuracy with C-E loss

L1

LSTM network models for T/F prediction
outperformed other models, but it is worthwhile to note
that for T/F the dataset was quite balanced (3.981 posts
for T and 4.693 posts for F), whereas all other classes
were imbalanced® This is the reason the T/F classifier
was chosen as the representative for binary
classification models. Based on the results for T/F, we
can presume all other classifiers would work similarly
well on a larger and more balanced dataset in terms of
relative number of binary labels.

=ouacy

. - ~ = ~ - The experiment results are shown in Table IL
' mocs ' Models with 2 LSTM layers had the highest average
Figure 3. 5-SMA of validation accuracy with MSE loss accuracy, but models with only 1 layer showed the
highest average F1 macro score. On average, simpler
models outperformed other binary classificators. As an
illustration we showcase the accuracy (Fig. 5) and loss
(Fig. 6) for model 8 as an example of the typical
eI behavior of binary classifiers.

Mert gt However, the model which gave the best results on

the test dataset was model 18, with F1 macro score of

0.716 and accuracy of 71.81%, followed by the model

\ 7, with F1 macro score of 0.712 and accuracy of

72.04%. The number of neurons per layer had no

! significant impact. The 5-SMA of the loss for all T/F
H'-\h‘_ models is shown in Fig.7.
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Figure 4. Comparison of C-E and MSE for Model 1

316.675, E 1.999, P 5.240, J 3.434,N 7.477, S 1.197
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TABLE II. BINARY CLASSIFICATION RESULTS
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Model Nul:;l:;:; of N:;?ll:z:;sof Accuracy [%] Precision Recall | F1 score Training Time [s]
modell 1 5 56,605 0,559 0,559 0,559 80,22
model2 1 10 66,052 0,656 0,653 0,653 74,35
model3 1 25 64,900 0,644 0,641 0,641 76,65
model4 1 50 53,763 0,509 0,506 0,469 84,01
model5 1 100 55,991 0,555 0,554 0,555 99,37
model6 1 150 58,986 0,675 0,621 0,567 135,18
model7 1 500 72,043 0,720 0,711 0,712 295,60
model8 2 5,5 62,366 0,628 0,629 0,624 123,39
model9 2 10, 10 70,276 0,700 0,700 0,700 127,06
model10 2 25,25 56,912 0,584 0,526 0,447 130,03
modell 1 2 50, 50 70,353 0,704 0,706 0,703 143,91
modell2 2 100, 100 55,223 0,526 0,500 0,359 173,72
modell3 2 150, 150 68,356 0,695 0,693 0,683 256,33
model14 2 500, 500 58,909 0,585 0,563 0,545 607,40
modell5 3 55,5 66,206 0,680 0,675 0,661 177,29
modell6 3 10, 10, 10 52,995 0,678 0,571 0,470 181,15
modell7 3 25,25,25 55,376 0,777 0,502 0,360 183,98
modell8 3 50, 50, 50 71,813 0,716 0,717 0,716 199,23
modell9 3 100, 100, 100 56,068 0,547 0,541 0,532 255,29
model20 3 150, 150, 150 66,743 0,670 0,651 0,649 377,69
model21 3 500, 500, 500 70,353 0,722 0,683 0,681 945,07
model22 3 25,50, 100 55,223 0,276 0,500 0,356 217,40
model23 3 100, 50, 25 59,601 0,652 0,555 0,492 234,87
Model B

Fig 5. Validation accuracy of model 8 for 4 binary classification problems

I'-' 1% x sl 'I
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Fig 6. Validation loss of model 8 for 4 binary classification problems
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Fig. 7. 5-SMA of validation loss of different models for T/F prediction

V. CONCLUSION

Comparing the binary models with multiclass models, in
both cases, simpler models gave better F1 scores, whereas
models with a higher number of neurons had a higher
tendency to overfit.

It is in line with our expectations that models with more
layers and an increasing number of neurons per layer
outperform models with a decreasing number of neurons
per layer. However, model 22 did not behave according to
that expectations, and such behavior can be a topic for
future research.

The major issue we have detected was the imbalance of
the dataset. A larger and more balanced dataset would lead
to better results. However, the annotation of such a dataset
would incur a significant cost as MBTI annotation requires
highly skilled annotators, unlike sentiment analysis or
similar tasks. Our results show that a more balanced
dataset would lead to better results, as it was also
emphasized by [6]. This was showcased by the T/F binary
classifier, which operated on a well-balanced subset and
achieved good accuracy results.

An alternative approach to the dataset imbalance
problem would be to use class weights, as suggested in [7],
[13]. We leave these ideas as topics for future research.
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