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Abstract—This paper explores the impact of ultracapacitor
(UC) modelling on fast frequency response performance. The
dynamic model of the UC bank is based on the nonlinear
dynamic model of the UC cell which takes into account the
dependence of the UC parameters on the applied DC voltage.
The complete system is modelled and tested on IEEE 39-bus
system in DIgSILENT PowerFactory for overfrequency and
underfrequency events. The performance of the realistic UC
model is compared against an ideal ultracapacitor model to show
that the ideal representation is not always appropriate, although
for most cases the ideal model will suffice.

Index Terms—frequency control, inertial response, power
system dynamics, ultracapacitor, ultracapacitor, virtual inertia,
synthetic inertia

I. INTRODUCTION

The trend of increasing inverter-interfaced generation (IIG)
in power systems throughout the world and subsequent re-
duction of synchronous inertia has motivated many research
efforts on understanding stability of low-inertia systems as
well as developing new algorithms which enable the IIG
participation in system frequency control and other ancillary
services [1], [2].

In literature, much attention has been given to the applica-
tion of batteries mainly for frequency control due to their fast
response. However, standalone grid-scale UC banks exist that
can be used as an alternative to batteries for fast frequency
response because they can reach rated power output in mil-
liseconds which is similar to batteries, but they can withstand
significantly more charging/discharging cycles (up to millions
compared to thousands in batteries) [3], [4]. Furthermore,
UC can be charged and discharged to/from full power in a
matter of seconds due to high current withstanding capabilities.
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UC is also complementary to a battery and can be used in
coordination to maximize the benefits of both systems.

There were many papers utilizing ultracapacitor technology
for various applications. Ultracapacitor technology for electric
vehicle applications was studied in [5]–[7] in which the focus
was on numerical modelling and power electronics control
for energy management. UCs are often paired with wind
and/or solar generation systems for power smoothing, virtual
inertial response or low-voltage ride through (LVRT) [8]–[14]
in which the focus was on enhancing existing capabilities of
wind/solar generation systems. On larger scale applications,
ultracapacitor is often used as a part of a hybrid ESS in
microgrids [15]–[17] or isolated power systems [18]–[22]
for leveling out intermittent renewables or for grid ancillary
services such as frequency or voltage support.

However, almost all of these papers have one thing in com-
mon: the ultracapacitor is represented with an ideal capacitor
which may not be always appropriate. Research [23]–[25]
has shown that the ultracapacitor capacitance varies with the
applied voltage. Since the energy stored in a (ultra)capacitor is
directly proportional to the voltage, an error may arise when
sizing and calculating stored energy for certain application.

There were no papers that investigated the impact of ul-
tracapacitor modelling on its performance for fast frequency
control which is the topic of this paper. It should be noted
that the findings of this paper are relevant for studies when
the UC bank model is based on a capacitor element. On
the other hand, simpler models exist, e.g. [26] which are
appropriate for integration in bulk power system simulation
software. Such models do not model the capacitor behaviour
behind the inverter and the performance is controlled based
on initial state-of-charge and time integration of power output
during simulation.

II. ULTRACAPACITOR BANK MODELLING

The equivalent circuit of a UC cell for fast charg-
ing/discharging dynamics is shown in Fig. 1 [23]–[25]. Ma-
jority of the ultracapacitor capacitance comes from Cuc which
is a voltage-dependent capacitance. Voltage-dependent part of
this capacitance can range up to 40% of total capacitance at
rated voltage based on the cell in question [24], [25]. Series978-1-7281-8550-7/20/$31.00 c©2020 IEEE



combination of parallel branches Rs1C
s
1–RsnC

s
n is actually an

infinite series of these parallel groups. However, 5 elements
are enough to obtain an accurate model according to [25].
Parameters of the RC circuit are defined by (1)–(3) [25].

Cuc(uC) = C0 + kvuC(t) (1)

Csk =
1

2
Cuc, k ∈ {1...n} (2)

Rsk =
2τ(uC)

k2π2Cuc
(3)

C0 is the ultracapacitor capacitance at 0 V and kv is a
constant expressed in F/V. τ(uC) is another experimentally
determined parameter (it has a dimension of time) and can
also be expressed as function changing linearly to the output
voltage: τ(uC) = τ0 + kτuC(t) [25]. However, it can also be
approximated by (4) [25]:

τ(uC) ≈ 3Cuc(Rdc −Rs), (4)

where Rdc is the equivalent series resistance experimentally
obtained at very low frequencies (essentially DC). Naturally,
Rdc > Rs. All these parameters can be identified using
manufacturer’s data sheet.

A. Impact of ultracapacitor modelling level of detail

Simulations of different model responses are conducted
in MATLAB-Simulink using Simscape Electrical toolbox.
Dedicated models of a commercial ultracapacitor [25] was
used with varying levels of detail to show the differences
in performance. Input to the model is the current iuc(t)
and output of the model is the ultracapacitor voltage uuc(t).
Results are shown in Fig 2. Firstly, it can be seen that the
parallel groups do not play a significant impact in the voltage
response (Fig. 2a). Generally, accuracy of voltage response is
not lost if the parallel groups are neglected, although at least
one should be included if greater accuracy is to be achieved
since the difference in stored energy estimation can be up to
10% on average due to losses.

Fig. 2b shows that using the ideal capacitor representation
may yield inaccurate voltage response. In this case, the most
accurate response was achieved with capacitance at half the
rated voltage. However, this may not always be the case
as the expression for Cuc also plays a role. Nevertheless,
the ideal representation will not reflect the voltage transient
effect which occurs when the charging or discharging current
is discontinued due to the ESR effect. Fig. 2c shows the
difference between stored energy for a detailed model and an
ideal capacitor. If ideal capacitor representation has to be used,
than it is better to use a capacitance value which is closer to
the ultracapacitor capacitance at between half the rated voltage
and capacitance at 0 V because the error in stored energy is
significantly smaller. Generally, the value of stored energy will
be more optimistic for an ideal model than for nonideal model.

Energy in an ideal ultracapacitor and energy in a nonideal
ultracapacitor are described by equations (5) and (6), respec-
tively. Energy in the two models is equal when the capacitance

Rs

+ −uRs

iuc

Cuc(uC)

+ −
uC

C1(uC)

+ −
uC1

R1(uC)

C5(uC)

+ −
uC5

R5(uC)

+ −
uuc(t)

Fig. 1. Detailed RC circuit of an ultracapacitor cell

of the ideal model is set to (7). Obviously, the ideal model
exactly represents the energy stored in a nonideal model only
for a certain operating point (voltage).

Eideal =

∫ U

0

C · u · du =
1

2
CidealU

2 (5)

Ereal =

∫ U

0

(C0 + k · u) · u · du =
1

2
C0U

2 +
1

3
kU3 (6)

Eideal = Ereal ⇔ Cideal = C0 +
2

3
kU. (7)

B. Scaling up the cell model to form a bank

A single ultracapacitor cell, although it can have a large
capacitance in thousands of Farads, is too small to provide
any significant power output since it is only rated up to
a few Volts. Therefore, a certain number of cells must be
connected in series (ns) to form a string of higher voltage.
Then, a certain number of strings must be connected in parallel
np to achieve larger capacitance and higher current rating.
Equivalent capacitance and resistance of a system is equal to
(8)–(9), respectively. To form a grid-scale ultracapacitor bank
(1–100+ MW), this means hundreds to thousands of cells in
series and tens to hundreds of strings in parallel.

Csys = Ccell
np
ns
. (8)

Rsys = Rcell
ns
np
. (9)

The dynamic model of the UC bank in the time domain is
developed by setting uuc(t) as an output y(t), iuc(t) as an
input u(t). Capacitor voltages are chosen as state variables.
Complete nonlinear model of the ultracapacitor bank in the
analytic form is described by (10)–(15) where Rsk and Csk are
defined by (2) and (3), respectively.
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uuc(t) = iuc(t)Rs + uC(t) +

n∑
k=1

uCs
k

= y(t) (10)

iuc(t) = u(t) (11)
usuc(t) = nsuuc(t) = nsy(t) (12)
imuc(t) = npiuc(t) = npu(t) (13)
duC
dt

=
iuc(t)

C0 + kvuC(t)
(14)

duCs
k

dt
= −

uCs
k

RskC
s
k

+
iuc(t)

Ck
(15)

Complete block diagram of the ultracapacitor bank model
described by (10)–(15) is shown in Fig. 3.

III. CONTROL SYSTEM

The complete system with controls is shown in Fig. 4. P
and Q are active and reactive power injected or absorbed by
the inverter to or from the grid, while asterisk (*) denotes a
set-point value. V gridac is the AC voltage of the bus the inverter

is connected to. id and iq are the direct and quadrature axis
currents of the inverter. Inverter is controlled in the grid voltage
reference frame. PLL estimates the grid voltage angle as well
as the frequency for frequency control block. DC current
calculation block calculates the UC current for charging or
discharging. PQ control, PLL and inverter modules are all
standard elements found in many generic IIG models [27].

A. Charge control

Fig. 5 shows the structure of this block. State-of-Voltage
(SoV) measurement is used to control the charging and
discharging process since the energy of an UC is directly
proportional to voltage. Charging is stopped if the UC module
is charged to nominal voltage, while discharging is stopped
when the ultracapacitor voltage falls below a user defined
minimum voltage threshold. Charging/discharging is enabled
again when the voltage reaches a user defined minimum
voltage level for charging/discharging.

B. DC current calculation

Input to the ultracapacitor model is the current, thus this
block calculates the charging or discharging DC current based
on the actual inverter power output. Block diagram of this
subsystem is shown in Fig. 6. Imax

ch and Imax
dch are the maximum

string charging and discharging current. Note that the module
operates in constant power output. Even though a UC can be
operated from 0 to rated voltage, for constant power output
this will not be possible since for very low voltage, a very
high current would be needed which could be more than
rated current. Therefore, for constant power control, minimum
voltage limit is set according to the maximum current limit or
other system limitation (e.g. DC-DC converter limitations). Up
to 75% of rated UC energy can be extracted between half the
rated voltage and rated voltage [28].

C. Frequency control module

Frequency control loop is shown in Fig. 7. The input to this
block is the grid frequency signal estimated by the PLL and
the output is the requested change in power. A standard virtual
inertia control (washout filter) used in many grid-following
converter based systems is implemented in this paper (e.g.
wind power [2], [29]).

IV. SIMULATION AND RESULTS

The performance of the proposed model is tested on a
modified IEEE 39-bus 10-machine New England test system
(inertia of G01 was reduced from 5 s to 1 s on 10000 MVA
base to simulate a reduced inertia system and G10 hydro
turbine was replaced with a faster IEEE GAST turbine model
with default parameters). A 500 MVA ultracapacitor bank is
connected to Bus 14. It consists of 4000 cells in series and
500 of those strings in parallel with the cell capacitance equal
to Cuc = 800 + 100uC(t) Farads. For this ultracapacitor cell,
the voltage-dependent part of the capacitance is around 25%
of total capacitance at rated voltage (2.5 V) which is a realistic
number for commercial cells (which can range from 10% to
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45% based on [24], [25], [30] and datasheets of commercial
UC cells). Rest of the UC bank parameters are given in the
Appendix. RMS simulations (10 ms time step) have been
conducted in DIgSILENT PowerFactory.
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Fig. 7. UC bank grid frequency control module

A. Underfrequency event

At t = 1 s, generator G05 initially operating with 254
MW is tripped to trigger an underfrequency event. Figure 8
shows that for a fully charged ultracapacitor the ideal and
nonideal model behave exactly the same regardless of the
size of the voltage dependent part of capacitance. However,
for a partially discharged UC (in this case, 60% of rated
voltage), the calculated frequency response is visibly different
depending on the choice of the ideal model capacitance, i.e.
in this case the error in frequency nadir ranges between 0.03
Hz and 0.1 Hz which is a large enough difference between
triggering underfrequency load shedding or not. However, the
range over which the ideal model accurately describes the
realistic behaviour may be smaller if the voltage-dependent
capacitance is bigger or if the contingency is bigger. If ideal
capacitor representation is used, then its capacitance should
be chosen somewhere between the capacitance at 0 V and ca-
pacitance at half the rated voltage depending on the operating
point and the expression for UC capacitance. The difference
in performance will always arise when the ultracapacitor is
completely discharged. This is because of the difference in
stored energy as each model will stop discharging at different
time. In terms of frequency control, this means that they will
stop discharging at different output power which will cause
different (secondary) frequency nadir. Nonetheless, for most
underfrequency contingency simulations, the UC will be fully
charged so the ideal model is applicable.
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Fig. 9. Frequency response for an ultracapacitor charged to 60% of rated
voltage

B. Overfrequency event

At t = 1 s, 628 MW load at Bus 20 is tripped to trigger
an overfrequency event. The behaviour is expected to be
similar to the behaviour during underfrequency event, although
complementary. In other words, since the overfrequency event
mandates that the UC bank will be charged instead of dis-
charged, then the major difference in model performance is
expected near full charge which is the worst case scenario.
Fig. 10 shows that the differences in model performance are
visible but they are not significant (difference in frequency
is around 0.01 Hz) for all ideal representations meaning that
the ideal model accurately describes the realistic model. For
smaller initial SoC, there is no difference between an ideal
and realistic model.

C. Internal dynamics of an ultracapacitor

Fig. 11 shows the UC bank voltage and power profile for
the underfrequency event case from Section IV-A for the UC
model Cuc = 800 + 100uC . Fig. 11a and Fig. 11b shows that
the ultracapacitor will discharge with different rates depending
on the modelling and value of the capacitance (as well as initial
voltage).

For a fully charged UC, different models will end up
with different state of voltage after the inertial response, i.e.
they will have different energy stored. In this case, the ideal
capacitor with rated capacitance (@2.5 V) will have the most
accurate voltage profile. However, there is no difference in
power profile (Fig. 11c) because the voltage profile is between
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Fig. 10. Frequency response to an overfrequency event for an ultracapacitor
charged to 95% of rated voltage

the minimum and maximum limits for all models. Therefore,
the requested power output will be equally delivered by all
models.

On the other hand, for an initially partially discharged UC
(Fig. 11b), different models will hit the minimum voltage
limit at different times, i.e. the output power profile will be
discontinued at different points. In other words, this acts as
another disturbance of different magnitude hence the system
frequency response will be different. In this case, the ideal
model with capacitance at 0 V reached the minimum voltage
limit while still discharging 100 MW to the grid. On the
other hand, the ideal model with rated capacitance had enough
energy to sustain the requested power profile. Nevertheless,
the secondary frequency drop can be avoided by switching
to constant current mode or using energy-estimation based
control [26].

V. CONCLUSION

In this paper we have investigated the impact of ultracapac-
itor modelling on its performance in fast frequency control.

The capacitance of the ultracapacitor varies with cell voltage
and an equivalent series resistance exists which is neglected
in ideal capacitor model usually used in literature to represent
the ultracapacitor. We have shown that the ideal model can
represent the realistic ultracapacitor in terms of energy stored
only in a single operating point in steady-state (i.e. capacitor
voltage). Generally, the ideal model with minimum ultracapac-
itor capacitance will yield accurate enough results in terms of
stored energy at a various operating points.

In dynamic simulations for frequency control, the ideal
representation is appropriate most of the time. This is when
the requested energy from the ultracapacitor is less than the
energy stored in the ultracapacitor system. In this case, the
response of the ideal model is the same as the response of
the nonlinear model. However, since different models with
different capacitance values will discharge at different rates,
the ideal representation may not adequately represent the
realistic behaviour if the requested energy is bigger than the
energy stored in the ultracapacitor system. This can lead to
erroneous conclusion about the expected frequency response.
The range over which the ideal model adequately represents
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the realistic model depends on the size of the contingency and
the ultracapacitor control system.

APPENDIX

Ultracapacitor bank system parameters: ns = 4000, np =
500, bank rated power: 500 MW, C0 = 800/900 F, kv =
100/60 F/V, Rdc = 0.5 mΩ, Rs = 0.25 mΩ, Imax

ch /Imax
dch =

±250 A, Umax
ch = 2.51 V, U start

ch = 2.25 V, Umin
dch = 1 V, U start

dch =
1.25 V, τc = 50 ms, Ki = 200 p.u., τw = 1 s, Kd

p = Kq
p = 1

p.u., Kd
i = Kq

i = 100 p.u.
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