Pregled bibliografske jedinice broj: 1108921
Adaptive rolling window selection for minimum variance portfolio estimation based on reinforcement learning
Adaptive rolling window selection for minimum variance portfolio estimation based on reinforcement learning // 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO)
Opatija, Hrvatska: Institute of Electrical and Electronics Engineers (IEEE), 2020. 20166276, 5 doi:10.23919/mipro48935.2020.9245435 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), ostalo)
CROSBI ID: 1108921 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Adaptive rolling window selection for minimum variance portfolio
estimation based on reinforcement learning
Autori
Gašperov, Bruno ; Šarić, Fredi ; Begušić, Stjepan ; Kostanjčar, Zvonko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), ostalo
Izvornik
2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO)
/ - : Institute of Electrical and Electronics Engineers (IEEE), 2020
Skup
43nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2020)
Mjesto i datum
Opatija, Hrvatska, 28.09.2020. - 02.10.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
reinforcement learning ; portfolio optimization ; covariance estimation
Sažetak
When allocating wealth to a set of financial assets, portfolio optimization techniques are used to select optimal portfolio allocations for given investment goals. Among benchmark portfolios commonly used in modern portfolio theory, the global minimum variance portfolio is becoming increasingly popular with investors due to its relatively good performance which stems from both the low- volatility anomaly and the avoidance of the estimation of first moments i.e. mean returns. However, estimates of minimum variance portfolio weights significantly depend on the size of the rolling window used for estimation, especially considering the non- stationarity of the underlying market dynamics. In this paper, we use a model-free policy-based reinforcement learning framework in order to directly and adaptively determine the optimal size of the rolling window. Training is done on a subset of trading stocks from the NYSE. The resulting agent achieves superior performance when compared against multiple benchmarks, including those with fixed rolling window sizes.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti, Ekonomija
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-5241 - Algoritmi dubokog podržanog učenja za upravljanje rizicima (DREAM) (Kostanjčar, Zvonko, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb