Pregled bibliografske jedinice broj: 1108422
Relative Perturbation Theory for Quadratic Hermitian Eigenvalue Problem
Relative Perturbation Theory for Quadratic Hermitian Eigenvalue Problem // Linear algebra and its applications, 612 (2021), LAA-D-18-00776R2, 38 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1108422 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Relative Perturbation Theory for Quadratic Hermitian
Eigenvalue Problem
Autori
Benner, Peter ; Liang, Xin ; Miodragović, Suzana ; Truhar, Ninoslav
Izvornik
Linear algebra and its applications (0024-3795) 612
(2021);
LAA-D-18-00776R2, 38
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Relative perturbation theory, quadratic eigenvalue problem, Hermitian quadratic matrix polynomial, Hermitian matrix pair
Sažetak
In this paper, we derive new relative perturbation bounds for eigenvectors and eigenvalues for regular quadratic eigenvalue problems of the form $(\lambda^2 M + \lambda C + K)x = 0$, where $M$ and $K$ are nonsingular Hermitian matrices and $C$ is a general Hermitian matrix. These results are based on new relative perturbation bounds for an equivalent regular Hermitian matrix pair $A- \lambda B$. The new bounds can be applied to quadratic eigenvalue problems appearing in many relevant applications, such as mechanical models with indefinite damping. The quality of our bounds is demonstrated by several numerical experiments.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-6774 - Redukcija vibracija u mehaničkim sustavima (VIMS) (Tomljanović, Zoran, HRZZ - 2019-04) ( CroRIS)
Ustanove:
Sveučilište u Osijeku, Odjel za matematiku
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus