Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1108168

Modelling the Semantic Relations Within Texts Using the UD NLP Tools for Syntactic Parsing, Neo4j Graph Database for Storing and igraph for Network Analysis


Perak, Benedikt
Modelling the Semantic Relations Within Texts Using the UD NLP Tools for Syntactic Parsing, Neo4j Graph Database for Storing and igraph for Network Analysis // Graph Technologies in the Humanities 2020
Beč, 2020. str. - (predavanje, međunarodna recenzija, pp prezentacija, znanstveni)


CROSBI ID: 1108168 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Modelling the Semantic Relations Within Texts Using the UD NLP Tools for Syntactic Parsing, Neo4j Graph Database for Storing and igraph for Network Analysis

Autori
Perak, Benedikt

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni

Izvornik
Graph Technologies in the Humanities 2020 / - Beč, 2020

Skup
Graph Technologies in the Digital Humanities: Modelling the Scholarly Process

Mjesto i datum
Beč, Austrija, 21.02.2020. - 22.02.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
parliament, graph analysis, corpus, graph algorithms, graph database

Sažetak
The paper deals with the application of the graph technologies for analysis of the Parliamentary data using NLP tools, graph database and network algorithms. It describes the structure of a morpho-syntactically tagged corpora embedding in a knowledge graph property database that can be used to explore corpus specific semantic relations for various type of empirical analysis of the communication, conceptualization and framing of the social identities, interactions, institutions and cultural models within a Parliamentary data domain. As a case study, the paper demonstrates the corpus, stylometric and semantic analysis of the Croatian Parliament debates, covering sessions from the year 2003– 2017.

Izvorni jezik
Engleski

Znanstvena područja
Politologija, Informacijske i komunikacijske znanosti, Filologija, Interdisciplinarne humanističke znanosti



POVEZANOST RADA


Projekti:
HRZZ-UIP-2017-05-9219 - Formalno rasuđivanje i semantike (FORMALS) (Perkov, Tin, HRZZ - 2017-05) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-human-18-243 - Jezično izražavanje emocija: Razvoj računalnih metoda identifikacije i ontološkog modeliranja komunikacije psiholoških stanja u hrvatskom jeziku (EmoCNet) (EmoCNet) (Perak, Benedikt, NadSve - UNIRI Sredstva potpore znanstvenim istraživanjima) ( CroRIS)

Ustanove:
Filozofski fakultet, Rijeka

Profili:

Avatar Url Benedikt Perak (autor)

Poveznice na cjeloviti tekst rada:

f.hypotheses.org uniri-my.sharepoint.com

Citiraj ovu publikaciju:

Perak, Benedikt
Modelling the Semantic Relations Within Texts Using the UD NLP Tools for Syntactic Parsing, Neo4j Graph Database for Storing and igraph for Network Analysis // Graph Technologies in the Humanities 2020
Beč, 2020. str. - (predavanje, međunarodna recenzija, pp prezentacija, znanstveni)
Perak, B. (2020) Modelling the Semantic Relations Within Texts Using the UD NLP Tools for Syntactic Parsing, Neo4j Graph Database for Storing and igraph for Network Analysis. U: Graph Technologies in the Humanities 2020.
@article{article, author = {Perak, Benedikt}, year = {2020}, pages = {---}, keywords = {parliament, graph analysis, corpus, graph algorithms, graph database}, title = {Modelling the Semantic Relations Within Texts Using the UD NLP Tools for Syntactic Parsing, Neo4j Graph Database for Storing and igraph for Network Analysis}, keyword = {parliament, graph analysis, corpus, graph algorithms, graph database}, publisherplace = {Be\v{c}, Austrija} }
@article{article, author = {Perak, Benedikt}, year = {2020}, pages = {---}, keywords = {parliament, graph analysis, corpus, graph algorithms, graph database}, title = {Modelling the Semantic Relations Within Texts Using the UD NLP Tools for Syntactic Parsing, Neo4j Graph Database for Storing and igraph for Network Analysis}, keyword = {parliament, graph analysis, corpus, graph algorithms, graph database}, publisherplace = {Be\v{c}, Austrija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font