Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1108086

Adjusted binary classification (ABC) model in forensic science: an example on sex classification from handprint dimensions


Jerković, Ivan; Kolić, Andrea; Kružić, Ivana; Anđelinović, Šimun; Bašić, Željana
Adjusted binary classification (ABC) model in forensic science: an example on sex classification from handprint dimensions // Forensic science international, 320 (2021), 110709, 8 doi:10.1016/j.forsciint.2021.110709 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1108086 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Adjusted binary classification (ABC) model in forensic science: an example on sex classification from handprint dimensions

Autori
Jerković, Ivan ; Kolić, Andrea ; Kružić, Ivana ; Anđelinović, Šimun ; Bašić, Željana

Izvornik
Forensic science international (0379-0738) 320 (2021); 110709, 8

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
binary classification ; discriminant analysis ; posterior probability ; forensic science ; handprints

Sažetak
Binary classification techniques are commonly used in forensic examination to test if a specimen belongs to a particular group and base the expert opinion on the questioned evidence. However, most of the currently used methods do not achieve sufficient accuracy due to the ignoring of the specimens classified in the overlapping area. To address the issue, we proposed a novel Adjusted binary classification (ABC) algorithm that automatically adjusts posterior probabilities to reach classification accuracy and positive/negative predicted values (PPV, NPV) of 95%. In the presented example, we used three handprint measurements from 160 participants (80 males and 80 females) to develop models that would classify sex from their dimensions. The sample was split into the training/cross-validated (70%) and testing sample (30%). We developed four classification models using linear discriminant analysis (LDA) by employing traditional single cut-off values and ABC approach that for each group provides a specific posterior probability cut-off threshold. In the cross- validated sample, the accuracy of traditional models was 78.7-92.5%, while PPVs/NPVs ranged between 78.2 and 93%. ABC models provided 95% accuracy, PPV, and NPV, and could classify 35.5-88.1% of specimens. In the testing sample, ABC models achieved accuracy of 97.3-100%, PPV/NPV 95.4-100%, and could be applied to 29.1-87.5% of specimens. The study demonstrated that the ABC approach could adjust classification models to reach predefined values of accuracy, PPV, and NPV. Therefore, it could be an efficient tool for conducting a binary classification in forensic settings and minimizing the possibilities of incorrect classifications.

Izvorni jezik
Engleski

Znanstvena područja
Temeljne medicinske znanosti, Sigurnosne i obrambene znanosti, Kognitivna znanost (prirodne, tehničke, biomedicina i zdravstvo, društvene i humanističke znanosti)



POVEZANOST RADA


Ustanove:
KBC Split,
Medicinski fakultet, Split,
Sveučilište u Splitu Sveučilišni odjel za forenzične znanosti

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Jerković, Ivan; Kolić, Andrea; Kružić, Ivana; Anđelinović, Šimun; Bašić, Željana
Adjusted binary classification (ABC) model in forensic science: an example on sex classification from handprint dimensions // Forensic science international, 320 (2021), 110709, 8 doi:10.1016/j.forsciint.2021.110709 (međunarodna recenzija, članak, znanstveni)
Jerković, I., Kolić, A., Kružić, I., Anđelinović, Š. & Bašić, Ž. (2021) Adjusted binary classification (ABC) model in forensic science: an example on sex classification from handprint dimensions. Forensic science international, 320, 110709, 8 doi:10.1016/j.forsciint.2021.110709.
@article{article, author = {Jerkovi\'{c}, Ivan and Koli\'{c}, Andrea and Kru\v{z}i\'{c}, Ivana and An\djelinovi\'{c}, \v{S}imun and Ba\v{s}i\'{c}, \v{Z}eljana}, year = {2021}, pages = {8}, DOI = {10.1016/j.forsciint.2021.110709}, chapter = {110709}, keywords = {binary classification, discriminant analysis, posterior probability, forensic science, handprints}, journal = {Forensic science international}, doi = {10.1016/j.forsciint.2021.110709}, volume = {320}, issn = {0379-0738}, title = {Adjusted binary classification (ABC) model in forensic science: an example on sex classification from handprint dimensions}, keyword = {binary classification, discriminant analysis, posterior probability, forensic science, handprints}, chapternumber = {110709} }
@article{article, author = {Jerkovi\'{c}, Ivan and Koli\'{c}, Andrea and Kru\v{z}i\'{c}, Ivana and An\djelinovi\'{c}, \v{S}imun and Ba\v{s}i\'{c}, \v{Z}eljana}, year = {2021}, pages = {8}, DOI = {10.1016/j.forsciint.2021.110709}, chapter = {110709}, keywords = {binary classification, discriminant analysis, posterior probability, forensic science, handprints}, journal = {Forensic science international}, doi = {10.1016/j.forsciint.2021.110709}, volume = {320}, issn = {0379-0738}, title = {Adjusted binary classification (ABC) model in forensic science: an example on sex classification from handprint dimensions}, keyword = {binary classification, discriminant analysis, posterior probability, forensic science, handprints}, chapternumber = {110709} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font