Pregled bibliografske jedinice broj: 1105774
Nonnegative Least Squares Approach to Quantification of 1H Nuclear Magnetic Resonance Spectra of Human Urine
Nonnegative Least Squares Approach to Quantification of 1H Nuclear Magnetic Resonance Spectra of Human Urine // Analytical chemistry, 93 (2021), 2; 745-751 doi:10.1021/acs.analchem.0c02837 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1105774 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Nonnegative Least Squares Approach to
Quantification of 1H Nuclear Magnetic Resonance
Spectra of Human Urine
Autori
Kopriva, Ivica ; Jerić, Ivanka ; Popović Hadžija, Marijana ; Hadžija, Mirko ; Vučić Lovrenčić, Marijana
Izvornik
Analytical chemistry (0003-2700) 93
(2021), 2;
745-751
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
1H nuclear magnetic resonance spectroscopy ; nonnegative least squares ; human urine ; metabolic profiling
Sažetak
Due to its quantitative character and capability for high throughput screening, 1H nuclear magnetic resonance (NMR) spectroscopy is used extensively in the profiling of biofluids such as urine and blood plasma. However, the narrow frequency bandwidth of 1H NMR spectroscopy leads to a severe overlap of the spectra of components present in the complex mixtures such as biofluids. Therefore, 1H NMR-based metabolomics analysis is focused on targeted studies related to concentrations of the small number of metabolites. Here, we propose a library-based approach to quantify proportions of overlapping metabolites from 1H NMR mixture spectra. The method boils down to the linear nonnegative least squares (NNLS) problem, whereas proportions of the pure components contained in the library stand for the unknowns. The method is validated on an estimation of the proportions of: (i) the 78 pure spectra, presumably related to type 2 diabetes mellitus (T2DM), from their synthetic linear mixture ; (ii) metabolites present in 62 1H NMR spectra of urine of subjects with T2DM and 62 1H NMR spectra of urine of control subjects. In both cases, the in-house library of 210 pure components 1H NMR spectra represented the design matrix in related NNLS problem. The proposed method pinpoints 63 metabolites that in a statistically significant way discriminate T2DM group from the control group, and 46 metabolites discriminating control from the T2DM group. For several T2DM- discriminative metabolites, we prove their presence by an independent analytical determination or by pointing out the corresponding findings in the published literature.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Kemija, Računarstvo, Temeljne medicinske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-5235 - Strukturne dekompozicije empirijskih podataka za računalno potpomognutu dijagnostiku bolesti (DEDAD) (Kopriva, Ivica, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Klinička bolnica "Merkur",
Klinika za dijabetes, endokrinologiju i bolesti metabolizma Vuk Vrhovac,
Institut "Ruđer Bošković", Zagreb
Profili:
Ivanka Jerić
(autor)
Marijana Vučić Lovrenčić
(autor)
Ivica Kopriva
(autor)
Mirko Hadžija
(autor)
Marijana Popović-Hadžija
(autor)
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi pubs.acs.org doi.org fulir.irb.hrCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE
- Nature Index