Pregled bibliografske jedinice broj: 1105438
Dataset and a methodology for intraoperative computer-aided diagnosis of a metastatic colon cancer in a liver
Dataset and a methodology for intraoperative computer-aided diagnosis of a metastatic colon cancer in a liver // Biomedical Signal Processing and Control, 66 (2021), 102402, 11 doi:10.1016/j.bspc.2020.102402 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1105438 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Dataset and a methodology for intraoperative computer-aided diagnosis of a
metastatic colon cancer in a liver
(Dataset and a methodology for intraoperative
computer-aided diagnosis of a metastatic colon
cancer in a liver)
Autori
Sitnik, Dario ; Aralica, Gorana ; Hadžija, Mirko ; Popović Hadžija, Marijana ; Pačić, Arijana ; Milković Periša, Marija ; Manojlović, Luka ; Krstanaca, Karolina ; Plavetić, Andrija ; Kopriva, Ivica
Izvornik
Biomedical Signal Processing and Control (1746-8094) 66
(2021);
102402, 11
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
intraoperative diagnosis ; metastatic colon cancer ; liver ; stain normalization ; U-Net(++) ; DeepLabv3
Sažetak
The lack of pixel-wise annotated images severely hinders the deep learning approach to computer- aided diagnosis in histopathology. This research creates a public database comprised of: (i) a dataset of 82 histopathological images of hematoxylin-eosin stained frozen sections acquired intraoperatively on 19 patients diagnosed with metastatic colon cancer in a liver ; (ii) corresponding pixel-wise ground truth maps annotated by four pathologists, two residents in pathology, and one final-year student of medicine. The Fleiss' kappa equal to 0.74 indicates substantial inter-annotator agreement ; (iii) two datasets with images stain-normalized relative to two target images ; (iv) development of two conventional machine learning and three deep learning-based diagnostic models. The database is available at http://cocahis.irb.hr. For binary, cancer vs. non-cancer, pixel-wise diagnosis we develop: SVM, kNN, U-Net, U-Net++, and DeepLabv3 classifiers that combine results from original images and stain-normalized images, which can be interpreted as different views. On average, deep learning classifiers outperformed SVM and kNN classifiers on an independent test set 14% in terms of micro balanced accuracy, 15% in terms of the micro F1 score, and 26% in terms of micro precision. As opposed to that, the difference in performance between deep classifiers is within 2%. We found an insignificant difference in performance between deep classifiers trained from scratch and corresponding classifiers pre-trained on non-domain image datasets. The best micro balanced accuracy estimated on the independent test set by the U-Net++ classifier equals 89.34%. Corresponding amounts of F1 score and precision are, respectively, 83.67% and 81.11%.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Temeljne medicinske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-5235 - Strukturne dekompozicije empirijskih podataka za računalno potpomognutu dijagnostiku bolesti (DEDAD) (Kopriva, Ivica, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb,
Medicinski fakultet, Zagreb,
Klinička bolnica "Dubrava",
Klinički bolnički centar Zagreb
Profili:
Marijana Popović-Hadžija
(autor)
Gorana Aralica
(autor)
Marija Milković Periša
(autor)
Dario Sitnik
(autor)
Ivica Kopriva
(autor)
Luka Manojlović
(autor)
Arijana Pačić
(autor)
Mirko Hadžija
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus