Pregled bibliografske jedinice broj: 110501
Potential theory of subordinate killed Brownian motion in a domain
Potential theory of subordinate killed Brownian motion in a domain // Probability theory and related fields, 125 (2003), 4; 578-592 doi:10.1007/s00440-002-0251-1 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 110501 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Potential theory of subordinate killed Brownian motion in a domain
Autori
Song, Renming ; Vondraček, Zoran
Izvornik
Probability theory and related fields (0178-8051) 125
(2003), 4;
578-592
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
killed Brownian motions ; stable processes ; subordination ; fractional Laplacian
Sažetak
Subordination of a killed Brownian motion in a bounded domain $D\subset \R^d$ via an $\alpha/2$-stable subordinator gives a process $Z_t$ whose infinitesimal generator is $-(-\Delta|_D)^{; ; ; \alpha/2}; ; ; $, the fractional power of the negative Dirichlet Laplacian. In this paper we study the properties of the process $Z_t$ in a Lipschitz domain $D$ by comparing the process with the rotationally invariant $\alpha$-stable process killed upon exiting $D$. We show that these processes have comparable killing measures, prove the intrinsic ultracontractivity of the semigroup of $Z_t$, and, in the case when $D$ is a bounded $C^{; ; ; 1, 1}; ; ; $ domain, obtain bounds on the Green function and the jumping kernel of $Z_t$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0037107
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Zoran Vondraček
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts
- Mathematical Reviews