Pregled bibliografske jedinice broj: 1104512
The Kramer-Mesner method for quasi-symmetric designs
The Kramer-Mesner method for quasi-symmetric designs // 3rd Istanbul Design Theory, Graph Theory and Combinatorics Workshop
Istanbul, Turska, 2016. str. 1-1 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1104512 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The Kramer-Mesner method for quasi-symmetric
designs
Autori
Vlahović, Renata ; Krčadinac, Vedran
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
3rd Istanbul Design Theory, Graph Theory and Combinatorics Workshop
/ - , 2016, 1-1
Skup
3rd Istanbul Design Theory, Graph Theory and Combinatorics Workshop
Mjesto i datum
Istanbul, Turska, 13.06.2016. - 17.06.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
quasi-symmetric design, Kramer-Mesner method
Sažetak
A t-(v, k, λ) design is a set V of v points and a collection of k-subsets of V, called blocks, with the property that any t-subset of V is contained in exactly λ blocks. The design is quasisymmetric if any two blocks intersect either in x or in y points, for non-negative integers x < y. Quasi-symmetric designs have important connections with strongly regular graphs and other combinatorial structures. One of the most common methods for construction of designs with prescribed automorphism groups is the Kramer-Mesner method. We adapt it to quasi-symmetric designs and, using the adapted method, we find many new quasi-symmetric 2- (28, 12, 11) and 2-(36, 16, 12) designs. Furthermore, we find new quasi-symmetric design with parameters 2-(56, 16, 18), which had previously been unknown. The associated block graph is the Cameron graph with parameters SRG(231, 30, 9, 3).
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-1637 - Kodovi i s njima povezane kombinatoričke strukture (CoCoS) (Crnković, Dean, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb