Pregled bibliografske jedinice broj: 1104247
Analysis of a Nonlinear, Moving-Boundary, 3d Fluid-Mesh-Shell Interaction Problem
Analysis of a Nonlinear, Moving-Boundary, 3d Fluid-Mesh-Shell Interaction Problem // New trends in asymptotic methods for multiscale PDEs
Karlstad, Švedska, 2019. str. 14-14 (pozvano predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 1104247 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Analysis of a Nonlinear, Moving-Boundary, 3d
Fluid-Mesh-Shell Interaction Problem
Autori
Muha, Boris
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
New trends in asymptotic methods for multiscale PDEs
/ - , 2019, 14-14
Skup
New trends in asymptotic methods for multiscale PDEs
Mjesto i datum
Karlstad, Švedska, 21.10.2019. - 25.10.2019
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
Fluid-structure interaction ; elastic mesh ; weak solutions ; Navier-Stokes equations
Sažetak
We consider a nonlinear, moving-boundary, fluid- structure interaction problem between an incompressible, viscous fluid flow, and an elastic structure composed of a cylindrical shell supported by a mesh-like elastic structure. The fluid flow is modeled by the time-dependent Navier-Stokes equations in a three-dimensional cylindrical domain, while the cylindrical shell is described by a two-dimensional linearly elastic Koiter shell equations allowing displacements in all three spatial directions. The mesh-like structure is modeled as a one-dimensional hyperbolic net composed of linearly elastic curved rods. The rods are coupled at net's vertices via continuity of displacement and infinitesimal rotation, and through balance of forces and contact moments. The fluid and the mesh-supported structure are coupled via the kinematic and dynamic boundary coupling conditions describing continuity of velocity and balance of contact forces at the fluid-structure interface. We prove the existence of a weak solution to this nonlinear, moving-boundary problem by using the time discretization via Lie operator splitting method, Arbitrary Lagrangian-Eulerian mapping and a non-trivial extension of the Aubin-Lions-Simon compactness result to problems on moving domains.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-3706 - Analiza problema interakcije fluida i strukture i primjene (FSIApp) (Muha, Boris, HRZZ - 2018-01) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Boris Muha (autor)