Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1104247

Analysis of a Nonlinear, Moving-Boundary, 3d Fluid-Mesh-Shell Interaction Problem


Muha, Boris
Analysis of a Nonlinear, Moving-Boundary, 3d Fluid-Mesh-Shell Interaction Problem // New trends in asymptotic methods for multiscale PDEs
Karlstad, Švedska, 2019. str. 14-14 (pozvano predavanje, nije recenziran, sažetak, znanstveni)


CROSBI ID: 1104247 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Analysis of a Nonlinear, Moving-Boundary, 3d Fluid-Mesh-Shell Interaction Problem

Autori
Muha, Boris

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
New trends in asymptotic methods for multiscale PDEs / - , 2019, 14-14

Skup
New trends in asymptotic methods for multiscale PDEs

Mjesto i datum
Karlstad, Švedska, 21.10.2019. - 25.10.2019

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Nije recenziran

Ključne riječi
Fluid-structure interaction ; elastic mesh ; weak solutions ; Navier-Stokes equations

Sažetak
We consider a nonlinear, moving-boundary, fluid- structure interaction problem between an incompressible, viscous fluid flow, and an elastic structure composed of a cylindrical shell supported by a mesh-like elastic structure. The fluid flow is modeled by the time-dependent Navier-Stokes equations in a three-dimensional cylindrical domain, while the cylindrical shell is described by a two-dimensional linearly elastic Koiter shell equations allowing displacements in all three spatial directions. The mesh-like structure is modeled as a one-dimensional hyperbolic net composed of linearly elastic curved rods. The rods are coupled at net's vertices via continuity of displacement and infinitesimal rotation, and through balance of forces and contact moments. The fluid and the mesh-supported structure are coupled via the kinematic and dynamic boundary coupling conditions describing continuity of velocity and balance of contact forces at the fluid-structure interface. We prove the existence of a weak solution to this nonlinear, moving-boundary problem by using the time discretization via Lie operator splitting method, Arbitrary Lagrangian-Eulerian mapping and a non-trivial extension of the Aubin-Lions-Simon compactness result to problems on moving domains.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2018-01-3706 - Analiza problema interakcije fluida i strukture i primjene (FSIApp) (Muha, Boris, HRZZ - 2018-01) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Boris Muha (autor)

Poveznice na cjeloviti tekst rada:

www.kau.se www.kau.se

Citiraj ovu publikaciju:

Muha, Boris
Analysis of a Nonlinear, Moving-Boundary, 3d Fluid-Mesh-Shell Interaction Problem // New trends in asymptotic methods for multiscale PDEs
Karlstad, Švedska, 2019. str. 14-14 (pozvano predavanje, nije recenziran, sažetak, znanstveni)
Muha, B. (2019) Analysis of a Nonlinear, Moving-Boundary, 3d Fluid-Mesh-Shell Interaction Problem. U: New trends in asymptotic methods for multiscale PDEs.
@article{article, author = {Muha, Boris}, year = {2019}, pages = {14-14}, keywords = {Fluid-structure interaction, elastic mesh, weak solutions, Navier-Stokes equations}, title = {Analysis of a Nonlinear, Moving-Boundary, 3d Fluid-Mesh-Shell Interaction Problem}, keyword = {Fluid-structure interaction, elastic mesh, weak solutions, Navier-Stokes equations}, publisherplace = {Karlstad, \v{S}vedska} }
@article{article, author = {Muha, Boris}, year = {2019}, pages = {14-14}, keywords = {Fluid-structure interaction, elastic mesh, weak solutions, Navier-Stokes equations}, title = {Analysis of a Nonlinear, Moving-Boundary, 3d Fluid-Mesh-Shell Interaction Problem}, keyword = {Fluid-structure interaction, elastic mesh, weak solutions, Navier-Stokes equations}, publisherplace = {Karlstad, \v{S}vedska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font