Pregled bibliografske jedinice broj: 1104206
From machine learning to deep learning in agriculture-the quantitative review of trends
From machine learning to deep learning in agriculture-the quantitative review of trends // IOP Conference Series: Earth and Environmental Science
Taškent, Uzbekistan: IOP Publishing, 2020. 012138, 15 doi:10.1088/1755-1315/614/1/012138 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1104206 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
From machine learning to deep learning in
agriculture-the quantitative review of trends
Autori
Đokić, Kristian ; Blašković, Lucija ; Mandušić, Dubravka
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
IOP Conference Series: Earth and Environmental Science
/ - : IOP Publishing, 2020
Skup
1st International Conference on Energetics, Civil and Agricultural Engineering 2020 (ICECAE 2020)
Mjesto i datum
Taškent, Uzbekistan, 14.10.2020. - 16.10.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Agricultural engineering ; Agricultural robots ; Agriculture ; Deep learning ; Learning systems
Sažetak
In the last two decades, we have witnessed the intensive development of artificial intelligence in the field of agriculture. In this period, the transition from the application of simpler machine learning algorithms to the application of deep learning algorithms can be observed. This paper provides a quantitative overview of papers published in the past two decades, thematically related to machine learning, neural networks, and deep learning. Also, a review of the contribution of individual countries was given. The second part of the paper analyses trends in the first half of the current year, with an emphasis on areas of application, selected deep learning methods, input data, crop mentioned in the paper and applied frameworks. Scopus and Web of Science citation databases were used.
Izvorni jezik
Engleski
Znanstvena područja
Poljoprivreda (agronomija), Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Agronomski fakultet, Zagreb,
Veleučilište u Požegi
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus