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Abstract: A recent systematic experimental characterisation of technological thin films, based on elaborated 

design of experiments as well as probe calibration and correction procedures, allowed for the first time the 

determination of nanoscale friction under the concurrent influence of several process parameters, comprising 

normal forces, sliding velocities, and temperature, thus providing an indication of the intricate correlations 

induced by their interactions and mutual effects. This created the preconditions to undertake in this work an 

effort to model friction in the nanometric domain with the goal of overcoming the limitations of currently 

available models in ascertaining the effects of the physicochemical processes and phenomena involved in nanoscale 

contacts. Due to the stochastic nature of nanoscale friction and the relatively sparse available experimental data, 

meta-modelling tools fail, however, at predicting the factual behaviour. Based on the acquired experimental 

data, data mining, incorporating various state-of-the-art machine learning (ML) numerical regression algorithms, 

is therefore used. The results of the numerical analyses are assessed on an unseen test dataset via a comparative 

statistical validation. It is therefore shown that the black box ML methods provide effective predictions of the 

studied correlations with rather good accuracy levels, but the intrinsic nature of such algorithms prevents their 

usage in most practical applications. Genetic programming-based artificial intelligence (AI) methods are con-

sequently finally used. Despite the marked complexity of the analysed phenomena and the inherent dispersion 

of the measurements, the developed AI-based symbolic regression models allow attaining an excellent predictive 

performance with the respective prediction accuracy, depending on the sample type, between 72% and 91%, 

allowing also to attain an extremely simple functional description of the multidimensional dependence of nanoscale 

friction on the studied variable process parameters. An effective tool for nanoscale friction prediction, adaptive 

control purposes, and further scientific and technological nanotribological analyses is thus obtained. 
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1  Introduction 

Tribology, with its marked influence on manufacturing 

processes, energy consumption, environmental impacts, 

aerospace technologies or, more recently, the micro- 

and the nanotechnologies, especially the study of the 

fundamental physio-chemical aspects determining 

the origin of friction at the nanoscales, is a propulsive 

and evolving field of study [1, 2]. An innovative 

structured approach to the experimental assessment 

of the concurrent influence of the most important 

process parameters on dry (unlubricated) nanoscale  
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friction in single asperity contacts was introduced 

in a recent study [3]. This procedure is based on an 

elaborated design-of-experiments (DoE) methodology, 

conducted by using centroidal Voronoi tessellation 

(CVT) sampling [4], as well as on a carefully conceived 

characterisation of the stiffness of the used scanning 

probe microscopy (SPM) probes and of the influence 

of tip wear and adhesion on the obtained results. The 

measurements were performed by using the lateral 

force microscopy (LFM) measurement mode, i.e., 

lateral (transversal) scans performed on 500 nm × 

500 nm surfaces of the analysed aluminium oxide 

(alumina, Al2O3), titanium dioxide (TiO2), molybdenum 

disulphide (MoS2), and aluminium (Al) samples. The 

value of nanoscale friction Ff, in the multidimensional 

space defined by the used thin film materials, the 

normal loads acting on the samples (FN = 10, … , 

150 nN), sliding velocities (v = 5, … , 500 nm/s), and 

temperatures ( = 20, … , 80 ℃), could therefore be 

experimentally obtained in a set of 50 discrete 

sampling points. By using in a first instance first- 

order statistical analyses, based on Pearson’s 

product-moment correlations (PPMC) [5], important 

insights into the general trends of the dependence of 

nanoscale friction on the multiple studied process 

parameters were consequently obtained, confirming 

that their interactions and mutual effects must be 

investigated at the structural atomic level to be fully 

appreciated. 

With the goal of overcoming the limitations of 

currently available models in determining the effects 

of the processes and phenomena involved in nanoscale 

contacts, and obtaining true predictive models linking 

the cited process variables to the value of nanometric 

friction, the measurement results obtained in Ref. [3] 

are validated in this work numerically. To obtain the 

complete characterization of nanoscale friction from 

relatively sparse available experimental data, state- 

of-the-art data mining processes, employing various 

types of black-box machine learning (ML) [6] and 

function-generating symbolic regression (SR) artificial 

intelligence (AI) [7] methods, are thus employed. The 

modelling process relies on training the various 

models with existing experimental data, while new 

and independent measurements on unseen sampling 

points are made to test the developed models’ predictive 

performances. Thorough comparative analyses are  

then carried on. Despite the marked complexity of the 

analysed phenomena and the inherent dispersion of 

the measurements, the developed symbolic regression 

model allows achieving an unprecedented prediction 

accuracy. The obtained simple functional description 

of the dependence of nanoscale friction on the studied 

process parameters is an effective tool for nanoscale 

friction prediction, apt to be used in practical app-

lications, while offering fundamental insights into the 

tribological behaviour at the nanometric scales with 

multidimensional influential parameters. 

2 Methodology of developing a predictive  

model of nanoscale friction 

Due to the complex nonlinear nature of nanoscale 

friction, characterised by marked stochastic distribution 

but also, as a result of complex and time-consuming 

experimental measurement, due to the relatively sparse 

amount of available data, preliminary analyses of the 

experimental data obtained in Ref. [3], by using common 

linear, nonlinear, or multivariate regression methods, 

yielded poor results and showed weak predictive 

performances. On the other hand, state-of-the-art 

methods, employed in computer sciences, i.e., data 

mining, ML, and AI, are often used for complex 

and/or large data analyses [6, 8]. The process of data 

mining is, in fact, used to extract useful information 

from a bulk of observed data allowing to establish 

patterns and general knowledge, which, due to com-

plex relationships or the sheer amount of data, is very 

hard for a human analyst to achieve [9]. To provide 

the pursued insights, this approach requires an 

interdisciplinary use of ML and/or AI algorithms. 

To obtain predictive models linking the cited process 

variables to the value of nanometric friction, the results 

obtained experimentally in Ref. [3] are, therefore, 

analysed in this work by using ML and AI numerical 

methods (Fig. 1). ML algorithms for regression problems 

deliver black-box solutions that allow revealing 

patterns, i.e., “learning” how to map the respective 

inputs to system’s outputs and providing predictive 

results. These methods do not, unfortunately, result, 

however, in a functional mathematical form of the 

underlying relationships [6, 9]. The ML algorithms  
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Fig. 1 Numerical procedure for the development of a predictive 
model of nanoscale friction (MLP: multilayer perceptron; RF: 
random decision trees and forests; SVR: support vector regression; 
ALPS: age-layered population structure; GE: grammatical evolution; 
MG: multi-gene programming; MAE: mean absolute error; RMSE: 
root mean square error; R2: coefficient of determination). 

considered in this work [6, 10] are hence used to 

develop models by data preparation, training the 

algorithms, and optimizing their hyperparameters. 

AI, in the form of genetic programming (GP) methods 

[11], is then also employed, as it allows developing 

computer programs or mathematical expressions which 

are directly usable. In fact, as proven in the analysis 

of complex problems in a wide variety of research 

and development fields [12], GP methods are a very 

valuable state-of-the-art predictive tool [13]. The herein 

used type of GP is symbolic regression (SR) [10, 14], 

which should allow describing the data used to train 

the models with the best obtainable predictive 

performances. 

A proper assessment and validation of the derived 

model(s) will then be performed by assessing the 

results of the numerical analyses via a comparative 

statistical validation of each of the used algorithms. 

The best performing model’s predictive performance 

will, finally, be thoroughly scrutinized. 

2.1 Test dataset – experimental measurements 

Experimental measurements, intended to provide an 

unseen testing dataset for assessing the performances 

of the used ML and AI models, are performed on the  

same thin film materials, in the same multidimensional 

space of process parameters (FN, v, and  ) and with 

the same measurement methodology, but separately 

from those obtained in Ref. [3]. Each model is, therefore, 

evaluated based on predictive performances of Ff on 

this testing dataset. These new measurements, contrary 

to those performed in Ref. [3], are made on samples 

that were not dried prior to the measurements – 

yielding realistic technological conditions, and pro-

viding a more difficult predictive challenge for the used 

numerical models. The test dataset measurements are 

obtained by using again contact mode LFM, while, as 

thoroughly described in Ref. [3], calibrating the bending 

and transversal stiffness of the used Bruker’s triangular 

SNL-10 probes, taking into account the influence of the 

adhesive forces and their dependence on temperature 

as well as the wear of the tips and the respective 

interdependence of adhesion. The measurements are 

hence conducted in the hermetic enclosure of the 

used SPM device, while relative humidity is constantly 

monitored via a Texas Instruments humidity sensor 

coupled to an Arduino microcontroller logged to a 

personal computer (PC); the values of relative humidity 

could therefore be maintained at 40.23% ± 0.8% 

throughout the measurements. 

As conventionally done in ML methods, the whole 

available dataset is then divided into subsets comprising 

the main training data, the validation data, and the 

testing data [6]. The main training data provides herein 

the input information for the learning (training) process 

and requires the largest available amount of data. The 

validation data is, in turn, required for optimizing 

the hyperparameters of the algorithms by testing the 

learned model after each training iteration. The test 

dataset is, finally, completely left out of any interaction 

with the algorithms during the training phase, and is 

used only as an independent presentation of the real 

case scenario for testing the developed models’ per-

formances [6, 9]. Generally, 2/3 of the whole dataset is 

used for training, and 1/3 for the validation and test 

datasets [15]. The adopted size of the unseen test 

dataset is accordingly chosen to have 15 measurement 

points, with 5 repetitions for each of the 4 analysed 

thin film samples, representing roughly 1/3 of the 

main DoE-based dataset provided in Ref. [3]. 

The random number generator (Monte Carlo, MC) 

[16], as implemented in the GoSumD [17] software, is 
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used for the sampling of the test dataset within the 

boundaries of the considered influencing variable 

parameters FN, v, and . Observations of the obtained 

conjugate effects from experimental data are presented 

as first-order statistical approximations by correlation 

coefficients calculated as Pearson’s product moment 

correlation (PPMC) [5] (Table 1). The + and – signs 

indicate here, respectively, an increase or a decrease 

of the Ff values depending on the variation of the 

corresponding influencing parameter, while a “0” 

sign indicates no meaningful correlation. The values of 

the respective correlation factors themselves are shown 

in parentheses. These coefficients allow evidencing 

the effect of the variable adhesion forces on nanoscale 

friction, and, despite the present differences, show 

distinct similarities in the overall trends to the same 

thin film samples in the cases reported in Ref. [3]. 

2.2 Training of models and metrics for the model 

selection criteria 

Depending on the used ML method, the data in this 

study is standardized or normalized [9]. Experimental 

data obtained in the 50 points determined via the 

DoE-based CVT method for each of the considered 

thin films are therefore used in the ML training, 

resulting in models developed for each sample via 

each considered algorithm. The used experimental data 

is then assessed in terms of the respective normality 

characteristics, defined by the skewness and kurtosis 

parameters [5, 6]. It is hence established that all data 

can be considered normal, with the best normality 

characteristics of the Al sample, while the MoS2, Al2O3, 

and the TiO2 data show increasing levels of positive 

skewness. To explore the possibility to obtain a general 

model apt at describing (and predicting) the frictional 

properties of all the analysed materials, providing at  

Table 1 Effects of influencing parameters on Ff for the considered 
thin films on the MC-based test dataset (FA: adhesion force, FL: 
total normal load – see details in section 3 below). 

Sample FN FA FL v  

Al2O3 0 (–0.03) + (0.69) + (0.57) 0 (0.12) – (–0.69)

TiO2 + (0.80) – (–0.53) + (0.64) + (0.24) + (0.63)

Al 0 (–0.15) + (0.72) + (0.29) – (–0.24) – (–0.75)

MoS2 + (0.80) – (–0.42) + (0.81) 0 (0.07) + (0.35)

the same time a larger dataset to learn from, inherently 

resulting in better performances, all the used ML 

algorithms are also trained with the complete set of 

experimental data, i.e., in the pooled dataset of 200 

measurements on the 4 considered thin films. 

To avoid overfitting, when performing an ML 

experiment, it is a common practice to hold out part 

of the available input data for validation of the best 

performing hyperparameters. This is achieved here by 

using the cross-validation method, i.e., by randomly 

partitioning the original sample (DoE dataset) into a 

training set and a validation set. The level of confidence 

(the “skill”) of the used ML model on unseen data 

can therefore be assessed [6, 9]. 

To provide basis to implement the considered ML 

and AI numerical methods, suitable evaluation metrics, 

to be used to comparatively assess and validate the 

quality of the resulting predictive models, have to be 

defined next. In fact, the best fitness and predictive 

performances of the model cannot be assessed based 

on a single metric alone, but only via a careful analysis 

of model’s outputs (including the plotting of the results 

graphically, which, considering the multidimensionality 

of the considered phenomena, implies a large number 

of low-dimensional plots), the analysis of the obtained 

residuals, as well as of the distribution of the 

predictions [18]. 

One of the most frequent error estimates is the 

MAE metrics (Fig. 1), which measures the accuracy 

for continuous variables by assessing the average 

magnitude of the errors in a set of forecasts, without 

considering their directions [9, 18]: 


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            (1) 

where yi is the predicted and xi is the true (experimental) 

value in a dataset of n members. 

On the other hand, the RMSE represents the 

standard deviation of the residuals (prediction errors), 

i.e., a quadratic scoring rule that measures the average 

magnitude of the errors in terms of how far the data 

points are from the regression line [9, 18]: 
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MAE and RMSE can be used together to identify the 

variation of the errors in a set of forecasts. In that, the 

RMSE value will always be larger or equal to MAE; 

the greater the difference, the greater the variance 

in the individual errors. When RMSE = MAE, all the 

errors are of the same magnitude. 

Finally, the coefficient of determination R2 metric 

relies heavily on trend analysis, and it represents the 

proportion of the variance of a dependent variable to 

an independent variable or variables. With 
i

x  being 

the mean of the true values xi, R2 is defined as [9, 18] 
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The closer the R2 value is to 1, the better the fit, or 

relationship, between the two factors. 

Contrary to the validation of the ML models, in 

symbolic regression AI models based on genetic 

programming (GP-SR), the performance metrics in 

terms of MAE, RMSE, and R2 are generally not enough 

to assess the quality of the models. In fact, the GP-SR 

models are symbolic mathematical expressions whose 

form must be assessed also in terms of complexity 

[11, 13]. Multiple combinations of metrics are, hence, 

to be satisfied. The dominant numeric metric for the 

prediction assessment is chosen here to be the R2 

value, since this parameter describes best the form of 

the obtained solution in the variable space. Higher R2 

values present then solutions that allow following 

very well the trends of the values, so that the decision 

on selecting the best GP-SR model can be based on 

the combination of minimal expression complexity 

and maximal R2. This is accomplished by employing 

the Pareto frontier methodology [19, 20], where a 

set of solutions is chosen to be quasi-optimal, i.e., 

the optimality is selected on the basis of multiple 

conditions (in this case, the smallest 1 – R2 values and 

the lowest model complexity), thus identifying models 

characterised by the minima of the combination of 

these multiple parameters. 

3 Comparison of ML models 

Using the experimental data measured in the points 

determined via the DoE-CVT approach [3], ML is 

applied next to determine the dependency of the 

nanoscale friction force Ff on the process parameters 

FN, v, and . 

While the un-supervised ML methods rely on input 

data only, and are mainly used for clustering and 

association, supervised ML algorithms are trained on 

a dataset that comprises both inputs and corresponding 

outputs for each datapoint. Supervised ML algorithms 

are consequently described as those learning a target 

function (f) that allows the finest mapping of the input 

variables (x) to an output variable (y). This is called 

predictive modelling or predictive analytics [6, 18]. In 

this process, the correlation function’s form is unknown, 

i.e., there is no predefined form to fit the parameters. 

It is imperative, therefore, to “mine” through the 

data by employing multiple methods of predictive 

modelling [9], and deduce conclusions that can lead 

to understanding further the herein considered complex 

physical phenomena. As multiple ML algorithms 

are used in the respective data mining process, only 

the performance metrics achieved on the unseen test 

datasets of the ones that show satisfying performances 

are described here. MLP, RF, and SVR are therefore 

used. In fact, MLP is a deep artificial neural network 

based on supervised learning of functions. Iterative 

passages of the signals from the input to the output 

neuron layers and backwards allow minimising the 

errors via some of the gradient-based optimisation 

algorithms, such as the stochastic gradient descent 

formulation used in this work to obtain the optimal 

coefficients of the used activation function [21]. RF is 

one of the most popular and most powerful ensemble 

ML algorithm based on statistical methods allowing 

to combine multiple decision trees into a single strong 

predictor. Each tree is trained here independently with a 

randomly selected subset of the experimental data. 

The resulting prediction is the average of multiple 

ensemble predictions, obtained for optimal hyper-

parameter values [22]. Finally, in SVR, a learning 

algorithm retrieves the coefficients and parameters 

that, when coupled to optimisation algorithms, limit 

the number of support vectors in the solution with 

respect to the total number of samples in the dataset 

[23]. These state-of-the-art ML models have recently 

been shown to be a powerful tool for modelling 

multidimensional data [24], and in this work they 
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are developed using the TensorFlow [25], Scikit-learn 

[26], and GoSumD [17] implementations following 

the thus given optimisation procedures for the deter-

mination of the respective hyperparameters. The 

consequential representations, based on conventional 

ML algorithms, result, however, in black-box models, 

where the obtained solutions are not usable in a 

mathematical form in practical applications. 

All the obtained predictive performance results are 

related to the best in the ensemble of the used 10-fold 

cross-validated individuals. The attained values on 

the test datasets are reported in Table 2, where R2 is 

selected to be the dominant (but not exclusive) metric, 

with (bolded) R2 values above 0.7 considered as an 

indication of good predictive performances. The validation 

of the improvements in predictive performances is 

done herein by comparing all the used ML algorithms 

to the response surface model (RSM). In fact, RSM 

simply approximates the relationship between input  

Table 2 Comparison of predictive performances of the used ML 
models on the test datasets vs. RSM. 

Algorithm Sample RMSE MAE R2 

Al2O3  5.95  5.32  0.13 

TiO2 7.98 7.32 0.03 

Al 6.21 6.02 0.06 

MoS2 9.68 9.11 0.13 

RSM 

Pooled 3.82 3.56 0.34 

Al2O3  1.50  1.20  0.53 

TiO2 2.16 1.74 0.63 

Al 0.75 0.63 0.73 

MoS2 2.12 1.71 0.68 

RF 

Pooled 1.06 0.99 0.81 

Al2O3  1.64  1.36  0.63 

TiO2 2.17 1.75 0.68 

Al 0.85 0.72 0.77 

MoS2 2.02 1.60 0.71 

MLP 

Pooled 0.99 0.77 0.88 

Al 1.46 1.23 0.67 

Al2O3 1.32 1.11 0.51 

MoS2 1.34 1.15 0.75 

TiO2 3.26 2.76 0.66 

SVR 

Pooled 1.46 1.27 0.87 

and output variables by a statistical polynomial best 

fit to the topography of a response surface, and it was 

preliminarily used for obtaining correlations from 

experimental data. Given its simplicity, the conventional 

RSM model is consequently suitable as a baseline for 

a systematic comparison of the used ML models 

taking into account all the considered combinations 

of input data, i.e., for the data of each considered thin 

film sample material separately, as well as for the 

pooled data including all the analysed materials. 

Based on the data reported in Table 2, it can be 

concluded that the RF algorithm shows far better 

results than RSM, with the best achieved R2 value for 

Al, and the worst predictive result for the Al2O3 sample. 

All RF metrics show a small difference between RMSE 

and MAE, i.e., a low error variance. What is more, 

due to the nature of the ensemble of random decision 

trees, RF is inherently good at predicting the expected 

highly nonlinear variability of nanoscale friction. 

The MLP algorithm shows even better predictive 

performances, with achieved R2 > 0.7 for three out of 

the five considered datasets, with a low variance of 

RMSE and MAE. SVR shows generally somewhat 

weaker performances in terms of the highest achieved 

R2 values for all the samples, with the lowest variance 

of the RMSE–MAE metrics. 

Overall, when compared to the RSM base model, the 

performances of the ML methods show significant 

improvements in prediction capacity. All the used 

algorithms result in any case in the best predictive 

performances when trained on the pooled dataset, 

i.e., when the largest available set of training data is 

available, providing the model with broader infor-

mation in terms of response variance, resulting in 

enhanced predictivity. 

In order to fully appreciate the predictive perfor-

mances of pooled data trained models, the performances 

must be considered over separate testing datasets for 

each of the used sample materials. These metrics are 

shown in Table 3, allowing to evidence good predictive 

results, with almost all algorithms resulting in R2 

values > 0.7. The MLP algorithm shows again the best 

overall performances, with the prediction on all the 

samples with R2 in the vicinity of 0.8. The SVR 

algorithm predictions result in the highest scoring, 

with an R2 value of 0.9 achieved for the Al and MoS2  
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Table 3 Predictive performances of considered ML models trained 
on pooled data for each sample material. 

Algorithm Sample RMSE MAE R2 

Al2O3  0.85  0.65  0.63 

TiO2 2.31 1.03 0.56 

Al 1.30 0.60 0.80 
RF 

MoS2 1.59 0.60 0.81 

Al2O3  2.24  1.98  0.85 

TiO2 2.57 1.90 0.74 

Al 1.87 1.51 0.81 
MLP 

MoS2 1.50 0.74 0.79 

Al2O3  1.28  0.70  0.54 

TiO2 2.40 1.38 0.73 

Al 1.51 0.98 0.90 
SVR 

MoS2 1.16 0.61 0.90 

 

samples; however, the Al2O3 prediction have a 

disappointing R2 value of 0.54. 

In order to deduce the trustworthiness of the 

analysed ML methods in predicting the nanoscale 

friction force Ff in dependence on FN, v, and , the 

models are examined graphically for each of the used 

thin film materials as well, in the form of prediction 

fits vs. experimental test data. Figure 2 shows the 

resulting plots in the test data points ordered according 

to ascending temperatures, with the respective fits for 

the predictions of the RF, MLP, and SVR algorithms 

for the Al2O3 and TiO2 thin film samples synthesized by 

using the atomic layer deposition (ALD) technique. 

The measured points are shown in Fig. 2 with the  

respective uncertainty levels in three shades of grey, 

representing the ±σ variance of data (±1σ as the 

darkest, ±2σ as the medium, and ±3σ as the lightest 

shade of grey). What is more, for each considered 

ML algorithm and each material, in parentheses are 

denoted the respective R2 values. 

The data for Al2O3 shown in Fig. 2(a), with the well 

visible poor MLP fit, even though the achieved R2 

value in Table 3 is large, allows evidencing one of the 

pitfalls of data mining in general. In fact, MLP has a 

good form of the fit function, but it is significantly 

away from the uncertainty boundaries of the 

measurements. The SVR also gives a poor fit, but the 

respective trend is much closer to the experimental 

data, even though in this case the R2 value is low, 

which means that the trends of the responses are not 

closely followed. This is also the case for the RF model, 

with a slightly better correlation, but also with the 

obvious lack of fit, especially in the mid-range of the 

data. In the case of the equivalent TiO2 data (Fig. 2(b)), 

the fits are again generally out of the uncertainty 

boundaries of the measurements (even though the 

correlations are high for the SVR and MLP methods), 

but the trends are more closely followed by the models. 

This is true especially for the MLP model, as well as 

for the RF model in the higher-ordered datapoints. 

Figure 3 reports the equivalent results for the thin 

film samples obtained by using the pulsed laser 

deposition (PLD) synthesis method, i.e., for the Al 

and MoS2 thin film samples. It can be seen that the 

uncertainty bounds for the Al sample (Fig. 3(a)) are 

 

Fig. 2 Predictive performances of considered ML models on the test dataset for (a) Al2O3 and (b) TiO2 with respective uncertainty 
levels in three shades of grey. 
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much wider than those of the other analysed materials, 

and the fit is good for all the used ML algorithms. In 

the case of the MoS2 sample shown in Fig. 3(b), the 

narrow uncertainty area and a generally very good 

fit can be observed for all the used models. 

As pointed out previously, one or two single 

metric(s) cannot provide the needed confidence for 

the assessment of the used numerical models. The 

relation between the multiple interrelated influential 

parameters and the resulting value of nanoscale friction 

must, therefore, be represented and considered 

also through the visualization of the results obtained 

by using the ML models with at least two variable 

parameters, i.e., by using surfaces. All the combinations 

of the used algorithms, even the ones with poor 

performance metrics, are thoroughly analysed. Due 

to the large number of possible combinations of 

variable parameters’ representations vs. Ff, the graphs 

depicted below show the attained representative 

results for a constant value of one variable parameter 

chosen arbitrarily, although many other combinations 

were visualized during the data analyses, showing 

no major deviations from the depicted ones. The 

considered normal force variable is herein in the 

form of the total normal load defined as FL = FN + FA, 

i.e., as the sum of the exerted normal force FN 

(experimental parameter) and the adhesion force FA. 

The latter is a property of the analysed material, 

acting concurrently with the applied normal force, 

yielding, as described in Ref. [3], the total exerted 

normal load FL.  

Figures 4–9 present then the surface plots of Ff 

obtained by using the ML models when two of the 

process parameters are varied, while the third one is 

kept constant, i.e., when FL = 100 nN, v = 250 nm/s, 

and  = 40 ℃. The results obtained by using the RF 

ML model for the Al2O3 and TiO2 samples, obtained 

via the ALD process, are shown in Fig. 4. It can be 

deduced that, as already noted in Ref. [3], a highly 

nonlinear influence of temperature with a marked 

peak at ~40 ℃ is predicted. Opposite temperature 

effects can, however, be observed for the two con-

sidered materials, namely a strong positive trend for 

the Al2O3 and a quasi-parabolic negative effect for 

the TiO2 sample. The influence of velocity shows a 

quasi-linear trend vs. temperature, but a highly 

negative effect when related to the variable total 

load FL. The FL effect shows, finally, a weakening 

quasi-linear relationship for both materials with respect 

to the variable temperature , and an almost com-

pletely flat trend when related to the variable sliding 

velocity v. 

Figure 5, shows, in turn, the RF ML model solutions 

for the PLD-synthesized samples. The depicted trends 

of the effects of v and  on Ff for a constant FL value 

for the Al sample show a strong positive nonlinear 

correlation with temperature, and a weak quasi- 

linear effect for velocity. The similarity of the FL vs.  

trends for v = const. is clear for both the considered 

samples, showing again a highly nonlinear effect of 

temperature at ~40 ℃, while the v vs. FL influences at 

 = const. show similarities in terms of the strong 

weakening effect of v and a weak quasi-linear effect 

of FL. 

 
Fig. 3 Predictive performances of considered ML models on the test dataset for (a) Al and (b) MoS2 with respective uncertainty levels 
in three shades of grey. 
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The RF ML model predictions are, in any case, non- 

smooth; this is a typical feature of the decision tree ML 

models. It is important to note here especially that 

the trends of the Ff values, depicted in Figs. 4 and 5, 

show that there appears to be a general similarity 

between the nanotribological behaviour of all the 

analysed samples. 

In an analogous fashion, in Figs. 6 and 7 are then 

depicted the values of the nanoscale friction force Ff 

obtained by using the MLP model. Smoother predictive 

solutions are attained in this case. For the ALD 

synthetized samples shown in Fig. 6, the effects of 

sliding velocity vs. temperature for FL = const. show 

a smooth nonlinear effect of , and a smooth quasi- 

linear effect of v. The latter is evident also in the v vs. 

FL graphs for  = const. (right column); the influence 

of FL is almost-linear here, with a positive correlation. 

What is more, for the Al2O3 sample, there is a slightly 

tilted smooth quasi-linear effect of FL, and a diminishing 

effect of  at ~60 ℃, while for the TiO2 sample in equal 

conditions, there is a highly non-linear effect of , with 

a peak at ~50 ℃. 

 

Fig. 4 Surface plots of RF ML Ff values for constant variables in columns (left to right): FL, v, and , for Al2O3 (top row) and TiO2

(bottom row). 

 

Fig. 5 Surface plots of RF ML Ff values for constant variables in columns (left to right): FL, v, and , for Al (top row) and MoS2

(bottom row). 
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Striking overall similarities of the influential effects 

of the considered concurrent process parameters on 

Ff can be observed for the Al and MoS2 samples 

synthetized by using the PLD technology shown in 

Fig. 7. It can therefore be deduced that the effect of 

temperature, observed in conjunction with a variable 

velocity (left column), and the total normal load 

(middle column) alike, is again nonlinear with a 

parabolic-like dependence. The right-most column 

shows, moreover, a truly remarkable similarity of 

the continuous positive effect of FL on Ff, and a weak 

quasi-linear strengthening effect of v. 

SVR ML solutions are finally shown in Figs. 8 and 

9, allowing again to evidence clearly the influences of 

the considered process parameters on the frictional 

behaviour of all the sample materials in the nano-

domain. When compared to the results attained via 

the RF, and especially the MLP algorithms, the results 

obtained by employing the SVR method show quite 

curved surfaces, which is an inherent property of the 

used radial basis kernel function. 

Once more, the most striking resemblance among 

the two ALD synthetized thin film sample materials 

(Fig. 8) is visible in the right-most column showing 

 

Fig. 6 Surface plots of MLP Ff values for constant variables in columns (left to right): FL, v, and , for Al2O3 (top row) and TiO2

(bottom row). 

 

Fig. 7 Surface plots of MLP Ff values for constant variables in columns (left to right): FL, v, and , for Al (top row) and MoS2

(bottom row). 
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the effects of FL and v, a feature of nanofriction that is 

clearly becoming common and prominent for all the 

considered thin film materials. As in the previous 

cases, the highly non-linear influence of temperature 

is also obvious. On the other hand, when compared to 

the current knowledge in the field [27], the non-linear 

effect of FL for Al2O3 at constant v seems to be 

overemphasized, which could be a consequence of 

the evidenced low R2 value achieved by using the 

SVR model (see also Fig. 2). In the case of TiO2, the 

influence of FL is much smoother, although still giving 

rise to an augmenting effect on Ff, which is in 

accordance with the observed experimental correlations. 

The effect of sliding velocity is weak, negative, and 

quasi-linear in all cases, which is consistent with the 

low correlation factors found in the above experimental 

observations. 

The SVR ML solutions for the PLD samples shown 

in Fig. 9 allow appreciating again, already by a quick 

visual inspection, the striking similarities, not only 

between the sample materials themselves, but also in 

comparison to the MLP solutions. The data-mining 

process seems, therefore, to be converging towards a 

potential unified solution.  

 

Fig. 8 Surface plots of SVR Ff values for constant variables in columns (left to right): FL, v, and , for Al2O3 (top row) and TiO2

(bottom row). 

 

Fig. 9 Surface plots of SVR Ff values for constant variables in columns (left to right): FL, v, and , for Al (top row) and MoS2

(bottom row). 
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The analysis of the frictional behaviour in the 

nanometric domain performed by using the black-box 

ML models shows, thus, that it is possible to provide 

effective predictions of the influence of the multiple 

process parameter on the value of the friction force 

with satisfactory levels of accuracy, i.e., with R2 values 

ranging from a minimum of 0.54 for the SVR algorithm 

on the Al2O3 sample, to 0.9 for the SVR prediction 

on the Al and MoS2 samples. What is more, the other 

best-performing algorithms, namely the RF and the 

MLP ML models, also show high predictive per-

formances, especially when MLP is used. From the 

respective predictive performance of each model, it 

can also be concluded that the smoother solutions are 

preferable, i.e., the models exhibiting smoother solutions 

result in better predictive performances (higher R2 

values). 

4 AI-based genetic programming-symbolic 

regression models 

From the above analyses of black-box ML models, 

there is a clear indication that a generalized and 

common mathematical form apt at predicting the value 

of the nanoscale friction force in dependence on the 

multiple variable influencing parameters could indeed 

exist. The ML models, despite their high capabilities 

as predictive tools, cannot, however, be used in practice 

for in-depth analyses, numerical modelling, etc., since 

in the considered class of problems they entail a large 

number of coefficients, i.e., 200 support vectors for 

the SVR, or a large number of sigmoid function’s 

parameters for the MLP model. With the goal of 

attaining similar level of predictive performances, as 

well as a symbolic mathematical expression, AI-based 

evolutionary algorithms (EAs) will therefore be 

developed and described in this part of the work. In 

fact, a symbolic mathematical expression, providing 

an analytic form of correlation of the observed 

multidimensional experimental data with respect to 

the variable parameters, would present a big step 

towards identifying the physical laws that underlie 

the observed physical phenomena of nanoscale friction, 

which is the main goal of the herein performed research. 

A developed mathematical expression would also 

provide means for streamlined integration into,  

modification, and comparison with existing friction 

models and numerical schemes, as well as for a direct 

use in nanoscale friction prediction, i.e., for adaptive 

control purposes and for further analytical studies. 

AI EAs are, in turn, typically used to provide good 

approximate solutions to problems that cannot be easily 

solved using other techniques. In fact, sometimes it 

may be too computationally intensive to find an exact 

solution to the considered problem, but a near-optimal 

solution could still serve well the needed purposes. 

Finding a very good solution, if one exists, is indeed 

exactly suited for the herein considered purpose of 

determining the functional dependence of multiple 

variable parameters on the nanoscale friction force, 

since any kind of an expressional form of this 

dependence is not known a priori [9].  

It has been shown in prior art that EAs, such as, 

e.g., genetic programming (GP) algorithms, free of 

any human preconceptions or biases, can generate 

surprising solutions that are comparable to, or better 

than, the best human-based efforts [11, 14]. In contrast 

to conventional EAs, genetic programming-symbolic 

regression (GP-SR) evolves then a genome whose 

outputs are symbolic expressions, i.e., mathematical 

functions and variables, rather than predicted numerical 

values. EA methods that yield the most satisfactory 

predictive results were obtained to date by imple-

menting the following GP methods: standard methods 

(e.g. Koza style) (KS GP) [28], grammatical evolution 

(GE GP) [29], offspring selection (OS GP) [30], age- 

layered population structure (ALPS GP) [11], and 

multi-gene genetic programming (MG GP) [11]. These 

will, therefore, be used here for evolving an initial 

population of randomly generated symbolic expressions, 

while concurrently considering the expressions with 

best achieved error metrics described above. 

The mathematical expressions developed by 

employing these GP-SR methods are then com-

paratively analysed. For a thorough predictive 

performance assessment, models’ performance metrics 

are obtained, once more, after training them with a 

10-fold cross-validation on the DoE-CVT obtained 

experimental data [3], where 30% of the data is used 

as a validation set for parameter optimization, and 

then via assessing the models’ performances on the 

unseen test dataset. 
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Table 4 reports the performance metrics for the 

AI-based GP-SR models developed by training them 

on a single material dataset and on pooled data. With 

respect to the ML models analysed earlier, the perfor-

mance metrics also contain now information on model’s 

length and depth, both of which provide information 

about the symbolic expression’s complexity; the smaller 

these values are, the better. By inspecting the reported 

data, it can be seen that the performance of the ALPS 

GP model is relatively poor for all the analysed thin 

film samples. Only for MoS2 and the pooled dataset, 

the model results in higher R2 values of 0.74 and 

0.68, respectively, but with a high variance of MAE 

and RMSE. 

Table 4 Comparison of predictive performances of the AI-based 
models on the test datasets. 

Algorithm Sample RMSE MAE R2 Length Depth

Al2O3  2.66  1.51 0.40  153  27 

TiO2 3.59 2.91 0.59 48 11 

Al 5.36 4.13 0.16 101 18 

MoS2 1.48 1.08 0.75 39 13 

ALPS GP 

Pooled 2.00 1.48 0.68 197 34 

Al2O3  0.65  0.54 0.50  124  15 

TiO2 9.32 8.28 0.35 151 18 

Al 5.43 5.26 0.57 153 19 

MoS2 3.68 2.75 0.60 134 21 

KS GP 

Pooled 5.30 4.64 0.37 78 15 

Al2O3  1.28  1.20 0.47  38  11 

TiO2 8.17 6.64 0.35 37 14 

Al 5.16 4.93 0.41 21 12 

MoS2 7.77 6.89 0.62 33 11 

GE GP 

Pooled 4.62 3.33 0.05 38 13 

Al2O3  1.60  1.19 0.01  54  15 

TiO2 18.4 14.9 0.02 151 23 

Al 7.82 4.04 0.17 203 23 

MoS2 5.60 4.68 0.01 154 22 

OS GP 

Pooled 4.32 3.70 0.37 53 14 

Al2O3  0.69  0.64 0.51  40  3 

TiO2 2.10 1.67 0.54 39 4 

Al 1.08 0.95 0.82 81 4 

MoS2 0.93 0.81 0.90 97 3 

MG GP 

Pooled 1.48 1.06 0.82 84 4 

KS GP predictions are quite poor, with maximal 

predictive correlations (R2 values) of 0.6. High- 

complexity models are generated here, while the 

error variance is low. The GE GP approach generates 

the simplest models, but again with poor predictive 

performances, i.e., with maximal R2 values of 0.62. OS 

GP algorithms, although fast in execution, provide 

very low predictive performance models in all datasets. 

The MG GP provides by far the most impressive 

predictive correlations with R2 values of 0.82 for the 

Al and the pooled data, and up to 0.9 for MoS2. The 

worst predictive performances are, in turn, obtained 

for Al2O3 and TiO2 samples due to the associated 

poor distribution properties (related to the earlier 

mentioned skewness and kurtosis parameters) of the 

collected experimental data. It can be also noted here 

again that the performances of the models trained 

with the pooled datasets are the best, confirming the 

postulated rule that the larger the sets of data are, the 

better the obtained predictions. 

5 Results and discussion 

Based on the performance metrics of the various used 

AI-based GP-SR models, it can be concluded that the 

MG GP model trained with pooled data shows the 

best predictive performances, with high achieved R2 

values and a relatively compact model expression’s 

length and depth. This model is therefore thoroughly 

analysed further by assessing it next on the test 

dataset of each analysed thin film material individually. 

The resulting R2 values, given in Table 5 for the best 

MG GP model trained on the pooled data, allow 

evidencing a high predictive performance – in the 

range from 0.72 for TiO2 to 0.91 for Al, which is 

comparable to the best attained ML model results. 

The performance tests of the MG GP model also show 

a relatively low variance of RMSE and a low MAE 

error for all the considered thin film samples. 

Table 5 Predictive performances of MG GP model trained on 
pooled data of each sample material. 

Sample RMSE MAE R2 

Al2O3 0.552 0.450 0.760 

TiO2  2.19  1.51  0.725 

Al 1.04 0.774 0.909 

MoS2 2.43 2.06 0.736 
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MG GP models are selected herein as the best 

individuals from a population of 5,000 models from 

each training run, which corresponds to a 10-fold cross 

validation repeated 10 times for the 50 genes used in 

the multi-gene model. With the goal of minimizing 

the developed model’s complexity and the respective 

1 – R2 metrics value, the selection of the model is 

therefore performed by defining a Pareto frontier. The 

best selected model, i.e., that satisfying the minimal 

values on the Pareto frontier, is thus highlighted in 

Fig. 10. The respective model yields a mathematical 

expression involving seven variables: the three variable 

influencing parameters (i.e., the considered process 

parameters FL, , and v) and four material class 

variables (dummy-variables x4, … , x7), defining each 

material as a binary class. The resulting optimum-case 

mathematical expression, with predictive performance 

metrics as shown in Table 5, can hence be represented 

 

Fig. 10 MG GP models on a Pareto frontier of expressional 
complexity vs. the 1 – R2 values. 

in the form of Eq. (4) linking the value of the nanometric 

friction force Ff to the stated seven variables, showing 

the resulting relative complexities, as well as, when 

compared to conventional ML models, providing a 

much simpler and more user-friendly predictive tool 

to be used in practical applications. 
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The developed expression of Eq. (4) is actually a 

regression model that is scrutinized further next so as 

to confirm it as trustworthy for the prediction of the 

nanometric friction force. The scatter of the predicted 

vs. the actual (experimental) data is considered first 

(Fig. 11). A model with a good fit must ideally be 

approaching the R2 = 1 line, on which all the 

experimental observations would lie if there would 

be no deviations of the measurements and the model 

would perfectly predict the considered physical 

phenomenon. It can be observed that the developed 

model shows a relatively small scatter of the predictions 

of the training data (Fig. 11(a)), and of the testing 

data (Fig. 11(b)). The test data predictions are more 

important here, since they represent the factual 

predictive performances of the model on unseen data 

not used in the training phase, i.e., without any bias. 

The fit of predicted values of Fig. 11(b) shows a good 

linear trend with a tight accumulation of points around  

 

Fig. 11 Fits of predicted values of the model of Eq. (4) vs. experimental data for the training and test datasets. 
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the R2 = 1 line. 

In order to successfully predict future measured data, 

the developed predictive model must also reflect the 

stochastic properties. This is statistically tested by 

analysing the residual plots shown in Fig. 12. These 

depict the scatters of the residuals, i.e., the difference 

between the predicted and the actual (experimental) 

values, with the goal to observe stochastic, random 

distributions of these points. If there would be 

regularities in the form of a curve or a linear relationship 

would emerge, the model would not be fit for use, 

since this kind of predictive residuals indicates a heavy 

bias in the model. As shown in Figs. 12(a) and 12(b), 

in this case good stochastic and random properties 

are achieved. What is more, when the distribution of 

residuals for both datasets is considered (Fig. 12(c)), a 

Gaussian distribution is obtained, demonstrating in 

both cases good normality. 

With the same methodology used previously, the 

fit of the developed best AI-based MG GP model to 

each of the analysed materials in the test dataset points, 

i.e., the ability of the model to predict well the unseen 

real-world experimental data of the nanoscale friction 

force Ff in dependence on the considered process 

parameters FL, v, and , despite the respective stochastic 

distribution, is considered next. Figures 13(a) and 

13(b) depict the predictions and the experimental 

data for the ALD-synthetized Al2O3 and TiO2 samples. 

It can be clearly seen that the prediction for Al2O3 

predominantly lies within the uncertainty boundaries 

of the experiments, with slight deviations in some of 

the intermediate points. In the case of TiO2, although 

the fit on the first couple of data points is perfect, the 

predictions show in general relatively high deviations 

from the experimental points, which was noted also 

earlier for almost all the considered models, and is 

due to the nature of this sample’s data distribution. 

The fits of the model of Eq. (4) on the test dataset for 

the PLD synthesized Al and MoS2 thin film samples 

are, in turn, shown in Fig. 14. These plots show a 

remarkable fit quality. The Al sample is fitted within 

a 2σ range in almost all experimental points (Fig. 14(a)).  

 

Fig. 12 Residuals of the model of Eq. (4) on (a) the training and (b) the test dataset, with (c) the respective distributions. 

 

Fig. 13 Predictive performances of the best developed MG GP model on the test dataset for (a) Al2O3 and (b) TiO2 with respective 
uncertainty levels in three shades of grey. 
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The MoS2 data are fitted extremely well (Fig. 14(b)), 

considering some of the issues related to this material 

evidenced earlier when using several other considered 

predictive models. 

Figures 15 and 16 show next the surface plots of 

the nanoscale friction force Ff values obtained by 

applying the model of Eq. (4) when two of the process 

parameters are varied while the third one is kept 

constant, i.e., for FL = 100 nN, v = 250 nm/s, and  = 40 ℃. 

The plots show similarity with respect to the solutions 

obtained by employing the MLP and SVR models, 

but it is clear that the solutions obtained in this 

case are much simpler and smoother. For the ALD 

synthesized samples (Fig. 15), the influence of sliding 

velocity on friction is smooth, with a negative linear 

effect vs. temperature. The influence of temperature, 

as observed in the previously considered ML models, 

is again non-linear and stays quite stable with a variable 

sliding velocity or normal load. Finally, the effects 

of sliding velocity and normal load show striking 

linear dependences as well as a general similarity to 

previously obtained solutions. 

These similarities, permeated throughout the analyses 

based on the proposed MG GP model of nanoscale 

friction, are also evident in Fig. 16 for the PLD- 

synthesized samples. This leads to a strong indication 

that the excellent fitness of the model is a general 

trend. For both the samples in Fig. 16, it is also evident 

that the velocity dependence is linear, as is the influence 

of normal load, while the effect of temperature is again 

nonlinear. What is more, an interesting similarity with 

almost identical trends in the case of the TiO2 and 

MoS2 samples becomes evident as well. 

The results obtained by employing the developed 

MG GP model show, therefore, undisputable and 

striking evidence of a similarity of the influence of 

the considered multiple variable process parameters 

on nanoscale friction, which was not only a hard idea 

to grasp in the earlier stages of this research, but also 

a result never attained in available literature. After all 

the performed tests and evaluations, it can consequently 

be concluded with a relatively high degree of certainty 

that, at least for the tested thin film materials, the 

developed model faithfully reproduces the experimental 

results, providing, importantly, at the same time a 

robust predictive tool (and even a mathematical 

formulation) for the dependence of the value of Ff on 

the observed variable influencing parameters. It is 

thus shown that the proposed MG GP mathematical 

formulation allows predicting with high accuracy 

and fidelity the value of nanoscale friction for a range 

of thin films, as well as the influence of the most 

important process parameters on this value. The 

obtained functional dependencies will therefore be 

thoroughly analysed further, providing very valuable 

insights into the tribological behaviour of thin films 

in the nanometric domain. 

In fact, the expression of the form given by Eq. (4) 

can be algebraically simplified further in terms of the 

class variables, i.e., by substituting the respective binary 

coding parameter characteristic for each of the used 

sample materials, yielding even simpler equations. 

Strikingly, the finally developed predictive model of 

nanoscale friction and its dependence on the total  

 

Fig. 14 Predictive performances of the best developed MG GP model on the test dataset for (a) Al and (b) MoS2 with respective 
uncertainty levels in three shades of grey. 
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normal load FL = FN + FA, on sliding velocity v, and 

on temperature  can be reduced for the studied 

thin film samples to the extremely simple and user- 

friendly form: 

 

 





         
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5
f L L

2 5 3

87.51 10
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F a F v b c F

d e       (5) 

where FL is expressed in nN, v in nm/s,  in ℃, the 

obtained Ff values are again in nN, while for the 

considered materials, the respective constants a–e are 

given in Table 6. The high degree of similarity of the 

influence of FL on Ff for TiO2, Al and MoS2 is very  

well visible here, as is that of the influence of v on Ff 

for all the considered thin films. 

The values of the parameters in Eq. (5) and Table 6 

allow appreciating right away a linear dependence  

Table 6  Constants defining the predictive model of Eq. (5) for 
the considered thin film samples. 

Sample a b c d e 

Al2O3 0.01183 0.8707 0 0.0194 9.67

TiO2 0.04559 1.831 0 0.02774 33.81

Al 0.04559 1.141 0.0001781 0.02279 11.02

MoS2 0.04559 1.751 0 0.02774 28.41
 

 

Fig. 15 Surface plots of MG GP model results for constant variables in columns (left to right): FL, v, and , for Al2O3 (top row) and 
TiO2 (bottom row). 

 

Fig. 16 Surface plots of MG GP model results for constant variables in columns (left to right): FL, v, and , for the Al (top row) and 
MoS2 (bottom row). 
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of Ff on FL with the constant a being equal for all the 

studied thin film sample materials except for Al2O3. 

Also, a weak linear influence of sliding velocity v is 

clear for all the materials. Temperature exhibits a strong 

nonlinear effect with a first- (parameter b), second- 

(parameter d), and third-order (12.58×10–5) impact 

and with, additionally, an intriguing interaction with 

FL via the correlation coefficient c for Al only. 

The obtained explicit mathematical formulation of 

Eq. (5) allows correlating the nanoscale friction force 

Ff to the investigated variable process parameters, 

and can be used to thoroughly study the physical 

influences of each of these variables separately, as well 

as the interaction of their concurrent effects, which is 

meticulously done below to appreciate the resulting 

physical implications and effects. 

The solutions of Eq. (5) are thus shown graphically 

in Fig. 17, allowing a visual representation of the 

dependence of the nanometric friction force Ff for all 

the thin film materials on the total normal load FL with 

variable temperatures  and sliding velocities v. It 

can be evidenced that all samples show fundamental 

similarities with a linear load dependence, as predicted 

also by the contact mechanics models with adhesion 

effects, such as the DMT [31]. The obtained linear 

dependencies allow evidencing also the slight weakening 

effect of v, which was experimentally proven in prior 

art [32–34]. This effect of diminishing friction with 

increasing sliding velocities is commonly attributed 

to the lubricative effect of the water-vapour layer 

adhered to the surface of the samples. Regarding the 

value of the sliding velocity effect, it can also be 

noted that, contrary to the small weakening effect on 

Ff for most of the samples, for Al2O3 a broader scatter 

between the parallel lines is obtained, i.e., a more 

pronounced negative dependence is present here. 

The intricate interdependence of adhesion and 

friction is, in turn, emphasised even more with these 

findings. In fact, the depicted lines show a change of 

slope and of the y-intercept with changing temperature, 

which is a direct consequence of the dominant effect 

of adhesion. What is more, this effect is superimposed 

to the effect of the normal force itself since, as 

discussed above and in Ref. [3], in the nanometric 

domain, the influence of the water meniscus is 

significant, inducing an increase of the total contact 

forces. Since, on the other hand, the variability of 

temperature induces a change of the amount of adsorbed 

water, i.e., a change of the state of the meniscus, the 

adhesive forces also change and so does, consequently, 

the total normal load. 

The variability of the influence of temperature is 

also evident in the graphs of Fig. 18, as can be noticed 

from the distance between the depicted friction lines. 

A larger distance caused by a change of  indicates a 

clearly more accentuated temperature effect, which is 

 

Fig. 17 Ff vs. FL for different values of v (solid line: v = 5 nm/s, dashed line: v = 255 nm/s, and dotted line: v = 500 nm/s) and  for
(a) Al2O3, (b) TiO2, (c) Al, and (d) MoS2 as obtained from the developed MG GP model. 
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mostly visible on the graphs of the Al and Al2O3 thin 

films. 

The influence of sliding velocity on the value of the 

nanoscale friction force is, finally, depicted for the 

considered thin film samples in Fig. 19. These graphs 

result in a bit more difficult visualization, since there 

are two strong overlapping effects in the two remaining 

dimensions. It is, nevertheless, obvious that the 

influence of v is predominantly small and, as amply 

evidenced before, weakening, while the stronger 

nonlinear influence of  changes the absolute value of 

the velocity effect, but not the trends or the strength 

of this effect. The influence of FL is also evident as a 

linear shift of the Ff vs. v line groups, which induces 

an increase of the value of Ff. 

Figures 17–19 show, therefore, the values of the 

nanoscale friction force Ff obtained by using the 

functional dependencies of Eq. (5) for the considered 

class of thin film sample materials and all the analysed 

variable process parameters. These graphs can be 

used as a graphical tool for determining the expected 

value of Ff. The diagrams show also vertical dashed 

and dotted boundary lines indicating the limits of the 

considered variables in the main and unseen test 

datasets, which, considering that the models used to 

derive the graphs are trained and tested only between 

these boundaries, provide a sort of a safety margin 

on their validity. 

6 Conclusions and outlook 

Based on the newly proposed structured methodology 

to the experimental determination of nanometric friction 

performed under the concurrent influence of several 

influencing parameters, namely of the normal forces, 

of sliding velocity and of temperature, based on an 

advanced DoE procedure and on the respective set-up 

of the measurement practise, in this work a systematic 

data mining process on the obtained data, aimed at 

attaining deep and methodical insights on nanoscale 

friction, is developed. It is based on using multiple 

state-of-the-art ML and AI-based genetic programming 

methods, assessed via comparative statistical validations 

on an unseen test dataset, structured so as to yield 

realistic operational conditions. The ML algorithms 

allow achieving very good predictive performances, 

and provide novel and very valuable insights into the 

functional dependencies of each variable’s impact on 

the friction force at the nanoscale, showing similarities 

and common treats to all the analysed thin film samples, 

with a strong indication that a common basis for the 

analysed physical phenomenon exists. With the goal of 

exploring this further, and attempting to possibly obtain 

also a straight-forward mathematical description of 

these effects, AI GP-SR algorithms are thus employed. 

A single and extremely simple mathematical expression, 

resulting in very high predictive performances, is 

 

Fig. 18 Ff vs.  for different values of v (solid line: v = 5 nm/s, dashed line: v = 255 nm/s, and dotted line: v = 500 nm/s) and FL (A: FL = 
10 nN, B: FL = 50 nN, C: FL = 100 nN, and D: FL = 150 nN) for: (a) Al2O3, (b) TiO2, (c) Al, and (d) MoS2 as obtained from the 
developed MG GP model. 
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finally obtained via an elaborated development based 

on MG GP, enabling to confirm the low impact of 

sliding velocity, a high positive impact of the total 

normal load, and a high nonlinear impact of tem-

perature on nanometric friction. Resulting correlation 

functions, linking the considered process variables to 

the value of nanometric friction, provide hence a very 

thorough insight into the studied phenomena made 

of complex interactions, as well as a very valuable, 

novel and unprecedented contribution in the field 

of nanotribology. What is more, the assessment of 

an abundance of experimental results via testing 

on state-of-the-art numerical methods, the resulting 

systematic evaluation of the predictive performances 

of these numerical methods, and finally, the original 

proposed model with marked high predictive per-

formances and of simple implementation, apt to be 

used for practical applications, are all important 

contributions of the performed work. 

All this constitutes the preconditions and provides 

means for an in-depth understanding and for practical 

improvements in the field of nanotribology, and a 

novel insight into this fundamental force of nature. 

This should allow eventually extending the formulation 

of existing friction models to the nanometric domain, 

establishing the foundation for the development of 

extended friction models and the resulting advanced 

control typologies, consequently contributing to 

increase the precision of the moving components and 

of positioning of structural elements and systems  

to the actual nanometric range. The results of the 

performed research provide also means to “bridge 

the gap” from nanotribology to the micro-, meso- 

and, on the upper spectrum of dimensionality, the 

macroscale systems with friction, enabling, therefore, 

also the development and modification of the current 

best control algorithms (such as, e.g., Refs. [35, 36]), 

with important potential applications to finite and 

boundary element simulation schemes involving 

frictional phenomena (in the current state-of-the-art 

given, e.g., in Refs. [37, 38]), multi-asperity contact 

models (such as, e.g., Refs. [39, 40]), fractal surface 

models (e.g., Refs. [41, 42]), comparison and validation 

of continuum methods (contact mechanics, e.g., Refs. 

[43, 44]), multiscale methods (such as Refs. [45, 46]), 

and other practical applications. On the lower end of 

the dimensionality spectrum, the herein proposed 

measurement methodologies and models provide an 

important validation tool for the molecular, atomic, and 

quantum effects of nanoscale friction. The performed 

work provides, therefore, also means for assessing and 

validating the results obtained by using molecular  

 
Fig. 19 Ff vs. v for different values of FL (square mark: FL = 50 nN, circle: FL = 100 nN, triangle: FL = 150 nN) and  (white filling:  = 
20 ℃, grey filling:  = 40 ℃, black filling:  = 80 ℃) for: (a) Al2O3, (b) TiO2, (c) Al, and (d) MoS2 as obtained from the developed MG 
GP model. 
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dynamics models involving the atomic structures of 

the surfaces in contact as well as, for example, the 

influence of the adsorbed water-vapour layer on the 

measured effects. In fact, the possibility to compare 

the results obtained in this research to molecular 

modelling calculations performed at the Molecular 

Biology and Nanotechnology Laboratory (MolBNL) 

of the University of Trieste, Italy [47], is already 

under way. 
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