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Abstract
In this work, we investigate the lubrication process of a slipper bearing. The slipper bearing
consists of two coaxial cylinders in relative motion, where an incompressible micropolar fluid
(lubricant) is injected in a thin gap between them. We compute the asymptotic approximation
of the solution to the governing micropolar system as a power series in terms of the small
parameter ε representing the thickness of the shaft. The proposed approximation is given in
the explicit form, allowing us to clearly observe the effects of the micropolar nature of the
fluid.
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1 Introduction

The model of micropolar fluids was introduced in 60’s by Eringen in his famous paper [1] and
provides a generalization of the classical Navier–Stokes model in the sense that it takes into account
the microstructure of the fluid. This is accomplished by introducing the microrotation field (angular
velocity field of rotation) describing effects such as rotation and shrinking and, accordingly, a new
vector equation coming from the conservation of angular momentum. In this way, we obtain
a coupled system of PDEs successfully describing various non–Newtonian fluids, including liquid
crystals, animal blood, muddy fluids, certain polymeric fluids and even water in small scales. Thus,
there exists a vast number of recent results concerning the engineering applications, primarily in
biomedicine (see e.g. [2], [3], [4]) as well as rigorous results (see e.g. [5], [6], [7], [8]) providing
various effective models for micropolar fluid flows. A comprehensive survey of the mathematical
theory underlying the micropolar fluid model can be found in [9].

The study of lubrication problems can be traced back to the celebrating work of Reynolds [10]
in 1886, where the author studied the thin film flow without giving a relation between his model
and the Navier–Stokes equations. A formal relation between the Navier–Stokes equations in a thin
domain and the Reynolds equation has been provided by Capriz [11], Elrod [12] and Wannier [13]
via asymptotic analysis. Rigorous justification of the Reynolds equation for a flow between two
plain surfaces has been provided by Bayada and Chambat [14] and Cimatti [15], whereas the study
of the asymptotic behavior of the viscous flow in an infinite thin layer between two fixed, plain
surfaces is due to Nazarov [16]. Motivated by the engineering applications, the investigation of
the lubrication process of a rotating shaft with classical, Newtonian fluid has been carried out by
Duvnjak and Marušić–Paloka in [17] and [18].

The aim of the present work is to generalize the results from [17], [18] to a case when lubricant
is assumed to be an incompressible micropolar fluid. In view of that, we study the lubrication
process of a slipper bearing which consists of two circular surfaces in relative motion. One belongs
to the shaft which is rotating with some constant angular velocity ω, while the other is a lubricated
surface of support. The shaft is of radius R and height l. Between the shaft and the support there
is a thin domain Cε of thickness ε� l completely filled with an incompressible micropolar fluid.

Starting from the system of micropolar equations posed in the thin domain Cε, we first rewrite
the problem in cylindrical coordinates. We then construct an asymptotic approximation of the
solution as a power series in terms of the small parameter ε > 0 representing the film thickness.
In this way, a higher–order approximation is proposed, taking into account the microstructure of
the fluid. Since the approximation is given in the explicit form, we believe the presented result
will contribute to the engineering practice, namely to optimal design of the lubrication devices
consisting of slipper bearings, appearing in industrial machinery with a large horse power having
high loads and speeds including steam turbines, pumps, compressors and motors (see [19]).
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2 Problem Settings

We describe the geometry of the thin film using cylindrical coordinates (r, ϕ, z). We denote by
Ξ: R3 → R3 the change of variables Ξ(x1, x2, x3) = (r, ϕ, z) and assume that the film thickness is
εh(ϕ), where ε > 0 is a small positive parameter. The flow domain is given by

Cε = {Σ−1(r, ϕ, z) ∈ R3 : ϕ ∈ 〈0, 2π〉, z ∈ 〈0, l〉, r ∈ 〈R,R+ εh(ϕ)},

where the function h : 〈0, 2π〉 → 〈0,∞〉 is of class C2, 2π–periodic and bounded in the sense
0 < β1 ≤ h(ϕ) ≤ β2, for ϕ ∈ 〈0, 2π〉 (see Figure 1).

Figure 1: The considered domain Cε.

Assuming a low Reynolds number regime, the flow in Cε is assumed to be governed by the following
system of micropolar equations [9]:

− µ∆uε +∇pε = arotwε + fε,

divuε = 0 in Cε,
− α∆wε − β∇divwε + 2awε = arotuε + gε.

(1)

In view of the application we want to model, we prescribe the following boundary conditions:

uε = 0 for r = R+ εh(ϕ),

uε = ω~eϕ for r = R,

uε = h0

(r −R
ε

, ϕ
)

for z = 0,

uε = hl

(r −R
ε

, ϕ
)

for z = l,

wε = 0 for ∂Cε,

(2)
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where uε, pε and wε represent the velocity, pressure and microrotation, respectively. The given
constants are defined by µ = ν + νr, α = ca + cd, β = c0 − ca + cd and a = 2νr, where ν is
the Newtonian viscosity, νr is the microroration viscosity, while c0, ca and cd are the coefficients
of angular viscosities. The external sources of linear and angular momentum are denoted by the
functions fε and gε.

Furthermore, we assume that the functions hα ∈ C2(S), α = 0, l, where

S = {(ρ, ϕ) : ρ ∈ 〈0, h(ϕ)〉, ϕ ∈ 〈0, 2π〉},

are 2π–periodic with respect to ϕ and satisfy the following relations:

hα(h(ϕ), ϕ) = 0, hα(0, ϕ) = ω~eϕ, α = 0, l,∫ 2π

0

∫ h(ϕ)

0

ρ~ez · h0(ρ, ϕ)dρdϕ =

∫ 2π

0

∫ h(ϕ)

0

ρ~ez · hl(ρ, ϕ)dρdϕ,∫ 2π

0

∫ h(ϕ)

0

~ez · h0(ρ, ϕ)dρdϕ =

∫ 2π

0

∫ h(ϕ)

0

~ez · hl(ρ, ϕ)dρdϕ.

(3)

The well–posedness of the above problem can be established in a standard manner (see e.g. [9]).
Our goal here is to investigate the asymptotic behavior of the problem (1)–(3), as ε→ 0.

3 Asymptotic Analysis

Taking into account the particular geometry of our domain, it is reasonable to rewrite write the
original problem (1)–(3) in cylindrical coordinates. The micropolar equations in cylindrical coor-
dinates takes the following form (see e.g. [20]):

− µ
(

∆uεr −
uεr
r2
− 2

r2
∂uεϕ
∂ϕ

)
+
∂pε

∂r
= a

(1

r

∂wεz
∂ϕ
−
∂wεϕ
∂z

)
+ fεr ,

− µ
(

∆uεϕ −
uεϕ
r2

+
2

r2
∂uεr
∂ϕ

)
+

1

r

∂pε

∂ϕ
= a

(∂wεr
∂z
− ∂wεz

∂r

)
+ fεϕ,

− µ∆uεz +
∂pε

∂z
= a

(∂wεϕ
∂r

+
wεϕ
r
− 1

r

∂wεr
∂ϕ

)
+ fεz ,

∂uεr
∂r

+
1

r
uεr +

1

r

∂uεϕ
∂ϕ

+
∂uεz
∂z

= 0,

(4)

− α
(

∆wεr −
wεr
r2
− 2

r2
∂wεϕ
∂ϕ

)
− β

(∂2wεr
∂r2

− wεr
r2

+
1

r

∂wεr
∂r
− 1

r2
∂wεϕ
∂ϕ

+
1

r

∂2wεϕ
∂ϕ∂r

+
∂2wεz
∂z∂r

)
+ 2awεr

= a
(1

r

∂uεz
∂ϕ
−
∂uεϕ
∂z

)
+ gεr ,

− α
(

∆wεϕ −
wεϕ
r2

+
2

r2
∂wεr
∂ϕ

)
− β

r

( ∂2wεr
∂ϕ∂r

+
1

r

∂wεr
∂ϕ

+
1

r

∂2wεϕ
∂ϕ2

+
∂2wεz
∂ϕ∂z

)
+ 2awεϕ

= a
(∂uεr
∂z
− ∂uεz

∂r

)
+ gεϕ,

− α∆wεz − β
(∂2wεr
∂z∂r

+
1

r

∂wεr
∂z

+
1

r

∂2wεϕ
∂z∂ϕ

+
∂2wεz
∂z2

)
+ 2awεz =

= a
(∂uεϕ
∂r

+
uεϕ
r
− 1

r

∂uεr
∂ϕ

)
+ gεz,

(5)

where

uε = uεr~er + uεϕ~eϕ + uεz~ez,

wε = wεr~er + wεϕ~eϕ + wεz~ez,
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and

∆sε =
∂2sε

∂r2
+

1

r

∂sε

∂r
+

1

r2
∂2sε

∂ϕ2
+
∂2sε

∂z2
,

for a scalar function sε.

3.1 Asymptotic Expansion

We seek the solution of the problem (1)–(3) in the following form:

uε ∼ u0(ρ, ϕ, z) + εu1(ρ, ϕ, z) + . . . ,

wε ∼ w0(ρ, ϕ, z) + εw1(ρ, ϕ, z) + . . . ,

pε ∼ 1

ε2
p0(ρ, ϕ, z) +

1

ε
p1(ρ, ϕ, z) + . . . ,

(6)

where ρ = r−R
ε , while the external force functions are given by:

fε(ϕ, z) ∼ 1

ε2
f0(ϕ, z) +

1

ε
f1(ϕ, z) + . . . ,

gε(ϕ, z) ∼ 1

ε2
g0(ϕ, z) +

1

ε
g1(ϕ, z) + . . . .

Let us note that fεr and gεr can be neglected due to the small thickness of the domain in the radial
direction. For the same reason, we can assume that the external force functions fε and gε are
independent of ρ.

Plugging the asymptotic expansion (6) into the system of equations (4)–(5) and collecting terms
by the same powers of ε, we obtain a recursive sequence of problems that can be solved explicitly.

3.2 Zero–Order Approximation

The zero–order approximation for the velocity and pressure (u0, p0) is the solution of the following
system:

1

ε2
: − µ∂

2u0r
∂ρ2

+
∂p1

∂ρ
= 0,

1

ε2
: − µ

∂2u0ϕ
∂ρ2

+
1

R

∂p0

∂ϕ
= f0ϕ,

1

ε2
: − µ∂

2u0z
∂ρ2

+
∂p0

∂z
= f0z ,

(7)

with the boundary conditions

ε0 : u0r(0, ϕ, z) = u0z(0, ϕ, z) = 0, u0ϕ(0, ϕ, z) = ω,

ε0 : u0r(h, ϕ, z) = u0ϕ(h, ϕ, z) = u0z(h, ϕ, z) = 0.
(8)

From the incompressibility equation (4.4) we obtain:

1

ε
:
∂u0r
∂ρ

= 0,

ε0 : R
∂u1r
∂ρ

+ u0r +
∂u0ϕ
∂ϕ

+R
∂u0z
∂z

= 0.

(9)

We conclude u0r = 0, p0 = p0(ϕ, z), p1 = p1(ϕ, z). The solution of (7)–(8) is given in the following
form:

u0ϕ =
1

2µ
(ρ− h)ρ

( 1

R

∂p0

∂ϕ
− f0ϕ

)
+ ω

(
1− ρ

h

)
,

u0z =
1

2µ
(ρ− h)ρ

(∂p0
∂z
− f0z

)
.

(10)
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From (9.2), we obtain the equation for the zero–order pressure approximation p0:

R
∂u1r
∂ρ

+
R

2µ
(ρ− h)ρ

(∂2p0
∂z2

− ∂f0z
∂z

)
+

1

2µ

∂

∂ϕ

(
(ρ− h)ρ

( 1

R

∂p0

∂ϕ
− f0ϕ

))
= − h

′

h2
ρω. (11)

Now, integrating the equation (11) with respect to ρ over 〈0, h(ϕ)〉 and taking into account the
boundary conditions u1r(0, ϕ, z) = u1r(h, ϕ, z) = 0, we obtain the Reynolds equation for p0:

Rh3

12

(∂2p0
∂z2

− ∂f0z
∂z

)
+

1

12

∂

∂ϕ

(
h3
( 1

R

∂p0

∂ϕ
− f0ϕ

))
=
h′µω

2
. (12)

We endow it with the boundary conditions

∂p0

∂z
= λz(ϕ) for z = 0, l,

p0 is 2π periodic in ϕ,

(13)

where λz(ϕ) can be chosen arbitrarily. The problem (12)–(13) is well–posed (see e.g. [17], [18]).

The zero–order approximation for the microrotation w0 is given by:

1

ε2
: − α∂

2w0
r

∂ρ2
− β ∂

2w0
r

∂ρ2
= 0,

1

ε2
: − α

∂2w0
ϕ

∂ρ2
= g0ϕ,

1

ε2
: − α∂

2w0
z

∂ρ2
= g0z ,

ε0 : w0
r(0, ϕ, z) = w0

ϕ(0, ϕ, z) = w0
z(0, ϕ, z) = 0,

ε0 : w0
r(h, ϕ, z) = w0

ϕ(h, ϕ, z) = w0
z(h, ϕ, z) = 0.

(14)

The problem (14) can be solved by putting:

w0
r = 0,

w0
ϕ =

1

2α
(h− ρ)ρg0ϕ,

w0
z =

1

2α
(h− ρ)ρg0z .

(15)

As expected, the zero–order approximation for the velocity given by (10) does not feel the effects
of the micropolar nature of the fluid. For this reason, we need to continue the computation and
construct the correctors.

3.3 First–Order Corrector

The first–order corrector for the velocity and pressure (u1, p1) is the solution of the following
system:

1

ε
: − µ∂

2u1r
∂ρ2

+
∂p2

∂ρ
= 0,

1

ε
: − µ

∂2u1ϕ
∂ρ2

− µ

R

∂u0ϕ
∂ρ

+
1

R

∂p1

∂ϕ
− ρ

R2

∂p0

∂ϕ
= −a∂w

0
z

∂ρ
+ f1ϕ,

1

ε
: − µ∂

2u1z
∂ρ2

− µ

R

∂u0z
∂ρ

+
∂p1

∂z
= a

∂w0
ϕ

∂ρ
+ f1z ,

ε : u1r(0, ϕ, z) = u1ϕ(0, ϕ, z) = u1z(0, ϕ, z) = 0,

ε : u1r(h, ϕ, z) = u1ϕ(h, ϕ, z) = u1z(h, ϕ, z) = 0.

(16)
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From the incompressibility equation (4.4) we deduce:

ε0 : R
∂u1r
∂ρ

+
∂u0ϕ
∂ϕ

+R
∂u0z
∂z

= 0,

ε : u1r + ρ
∂u1r
∂ρ

+
∂u1ϕ
∂ϕ

+R
∂u1z
∂z

+ ρ
∂u0z
∂z

= 0.

(17)

The solution of (16) is now given in the following form:

u1r = − ω

2R

h′

h2
ρ2 +

h′

4Rµ
ρ2
( 1

R

∂p0

∂ϕ
− f0ϕ

)
+

1

12µ
ρ2(3h− 2ρ)

( 1

R2

∂2p0

∂ϕ2
− 1

R

∂f0ϕ
∂ϕ

+
∂2p0

∂z2
− ∂f0z

∂z

)
,

u1ϕ =
1

2µR
ρ(ρ− h)

∂p1

∂ϕ
+

1

12R2µ
ρ(h− ρ)(h+ 4ρ)

∂p0

∂ϕ
+

ω

2Rh
ρ(ρ− h)

+
1

12µR
ρ(ρ− h)(2ρ− h)f0ϕ −

1

2µ
ρ(ρ− h)f1ϕ +

a

12αµ
ρ(ρ− h)(h− 2ρ)g0z ,

u1z =
1

12Rµ
ρ(ρ− h)(h− 2ρ)

(∂p0
∂z
− f0z

)
+

1

2µ
ρ(ρ− h)

∂p1

∂z

− a

12αµ
ρ(ρ− h)(h− 2ρ)g0ϕ −

1

2µ
ρ(ρ− h)f1z .

(18)

From the equation (17.2), we obtain the Reynolds equation for the first–order pressure corrector
p1:

Rh3

12µ

∂2p1

∂z2
+

1

12µR

∂

∂ϕ

(
h3
∂p1

∂ϕ

)
=

3h4

24R2µ

∂2p0

∂ϕ2
+

5h′h3

12R2µ

∂p0

∂ϕ
− 3h′h2

12Rµ
f0ϕ

− h4

12µR

∂f0ϕ
∂ϕ

+
h4

24µ

(∂2p0
∂z2

− ∂f0z
∂z

)
− 2ωh′h

3R

+
h′h2

4µ
f1ϕ +

h3

12µ

∂f1ϕ
∂ϕ

+
Rh3

12µ

∂f1z
∂z

.

(19)

We complete it with the boundary conditions:

∂p1

∂z
= τz(ϕ) for z = 0, l,

p1 is 2π periodic in ϕ,

(20)

where τz(ϕ) can be chosen arbitrarily. The problem (19)–(20) is well–posed (see e.g. [17], [18]).

The first–order corrector for the microrotation w1 is the solution of the following problem:

1

ε
: − α∂

2w1
r

∂ρ2
− α

R

∂w0
r

∂ρ
− β ∂

2w1
r

∂ρ2
− β

R

∂w0
r

∂ρ
− β

R

∂2w0
ϕ

∂ϕ∂ρ
− β ∂

2w0
z

∂z∂ρ
= 0,

1

ε
: − α

∂2w1
ϕ

∂ρ2
− α

R

∂w0
ϕ

∂ρ
− β

R

∂2w0
r

∂ϕ∂ρ
= −a∂u

0
z

∂ρ
+ g1ϕ,

1

ε
: − α∂

2w1
z

∂ρ2
− α

R

∂w0
z

∂ρ
− β ∂

2w0
r

∂z∂ρ
= a

∂u0ϕ
∂ρ

+ g1z ,

ε : w1
r(0, ϕ, z) = w1

ϕ(0, ϕ, z) = w1
z(0, ϕ, z) = 0,

ε : w1
r(h, ϕ, z) = w1

ϕ(h, ϕ, z) = w1
z(h, ϕ, z) = 0,

(21)
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leading to

w1
r = − β

12α(α+ β)
ρ(ρ− h)(h− 2ρ)

( 1

R

∂g0ϕ
∂ϕ

+
∂g0z
∂z

)
,

w1
ϕ =

a

12µα
ρ(ρ− h)(2ρ− h)

(∂p0
∂z
− f0z

)
− 1

2α
ρ(ρ− h)g1ϕ −

1

12αR
ρ(ρ− h)(h− 2ρ)g0ϕ,

w1
z = − 1

12αR
ρ(ρ− h)(h− 2ρ)g0z −

a

12µα
ρ(ρ− h)(2ρ− h)

( 1

R

∂p0

∂ϕ
− f0ϕ

)
+

aω

2αh
ρ(ρ− h)− 1

2α
ρ(ρ− h)g1z .

(22)

3.4 Asymptotic Solution

The derived asymptotic solution of problem (1)–(3) reads:

uεapp(ρ, ϕ, z) = εu1r(ρ, ϕ, z)~er + (u0ϕ(ρ, ϕ, z) + εu1ϕ(ρ, ϕ, z))~eϕ + (u0z(ρ, ϕ, z) + εu1z(ρ, ϕ, z))~ez,

pεapp(ϕ, z) =
1

ε2
p0(ϕ, z) +

1

ε
p1(ϕ, z),

wε
app(ρ, ϕ, z) = εw1

r(ρ, ϕ, z)~er + (w0
ϕ(ρ, ϕ, z) + εw1

ϕ(ρ, ϕ, z))~eϕ + (w0
z(ρ, ϕ, z) + εw1

z(ρ, ϕ, z))~ez,

(23)

where u0ϕ, u
0
z, w

0
ϕ, w

0
z , u

1
r, u

1
ϕ, u

1
z, w

1
r , w

1
ϕ, w

1
z are given (in the explicit form) by (10), (15), (18) and

(22), while p0 and p1 are the unique solutions (up to a constant) of the equations (12)–(13) and
(19)–(20), respectively.

4 Conclusion

In this work, we have studied the lubrication process of a slipper bearing consisting of a circular
shaft rotating on lubricated support with some constant angular velocity ω. The thin gap between
the shaft and the support is filled with an incompressible micropolar fluid. We have written the
governing micropolar equations (1) in cylindrical coordinates (see (4)–(5)) and applied a two-
scale expansion method (see (6)). We have derived the explicit expressions for the velocity and
microrotation zero–order approximation and the corresponding first–order correctors (see (10),
(15), (18) and (22)). By doing that, we directly verified that the asymptotic expansion given by
(23) feels the effects of the micropolarity of the fluid (see (18) and (22)).

It should be emphasized that the asymptotic approximation given by (23) was computed to satisfy
the governing equations (1) with the boundary conditions (2.1)–(2.2) and (2.5) for r = R and
r = R + εh(ϕ). The boundary conditions at z = 0 and z = l were not taken into account and, as
a result, the computed asymptotic solution does not necessarily satisfy these conditions. For this
reason, the boundary layer phenomena takes place. This can be corrected in a standard manner by
introducing the appropriate boundary layer correctors in the vicinity of the lower and upper part of
the shaft (see e.g. [17], [18]). It is important to note that these correctors would have exponential
decay towards zero and would not affect the approximation outside the boundary layers. However,
in this way, we would improve the convergence rate and provide a way of justification for our
derived model. A boundary layer analysis and the rigorous mathematical justification of the
proposed model via error estimates will be the subject of our future investigation.
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