Pregled bibliografske jedinice broj: 1102849
Deep Neural Network Model for Approximating Eigenmodes Localized by a Confining Potential
Deep Neural Network Model for Approximating Eigenmodes Localized by a Confining Potential // Entropy (Basel. Online), 23 (2021), 1; 95, 19 doi:10.3390/e23010095 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1102849 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Deep Neural Network Model for Approximating
Eigenmodes Localized by a Confining Potential
Autori
Grubišić, Luka ; Hajba, Marko ; Lacmanović, Domagoj
Izvornik
Entropy (Basel. Online) (1099-4300) 23
(2021), 1;
95, 19
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Anderson localization ; deep neural networks ; residual error estimates ; physics informed neural networks
Sažetak
We study eigenmode localization for a class of elliptic reaction-diffusion operators. As the prototype model problem we use a family of Schrödinger Hamiltonians parametrized by random potentials and study the associated effective confining potential. This problem is posed in the finite domain and we compute localized bounded states at the lower end of the spectrum. We present several deep network architectures that predict the localization of bounded states from a sample of a potential. For tackling higher dimensional problems, we consider a class of physics-informed deep dense networks. In particular, we focus on the interpretability of the proposed approaches. Deep network is used as a general reduced order model that describes the nonlinear connection between the potential and the ground state. The performance of the surrogate reduced model is controlled by an error estimator and the model is updated if necessary. Finally, we present a host of experiments to measure the accuracy and performance of the proposed algorithm.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-6268 - Stohastičke aproksimacije malog ranga i primjene na parametarski ovisne probleme (RandLRAP) (Grubišić, Luka, HRZZ - 2019-04) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb,
Veleučilište u Virovitici
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet