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The star product usually associated with the Snyder model of noncommutative geometry is non-
associative, and this property prevents the construction of a proper Hopf algebra. It is however possible to
introduce a well-defined Hopf algebra by including the Lorentz generators and their conjugate momenta
into the algebra. In this paper, we study the realizations of this extended Snyder spacetime, and obtain the
coproduct and twist and the associative star product in a Weyl-ordered realization, to first order in the
noncommutativity parameter. We then extend our results to the most general realizations of the extended
Snyder spacetime, always up to first order.
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I. INTRODUCTION

Since the advent of quantum field theory there have
been proposals to add a new length scale to the theory in
order to solve the problems connected to ultraviolet
divergences. Later, the necessity of introducing a funda-
mental length scale also arose in several attempts to build
a theory of quantum gravity. In these cases, the scale could
be identified in a natural way with the Planck length

Lp ¼
ffiffiffiffiffi
ℏG
c3

q
∼ 1.6 × 10−35 m [1].

A naive application of the idea of a minimal length (such
as, for example, a lattice field theory) would however break
Lorentz invariance. A way to reconcile the discreteness of
spacetime with Lorentz invariance was originally proposed
by Snyder [2] a long time ago. This was the first example of
a noncommutative geometry: the length scale should enter
the theory through the commutators of spacetime coordi-
nates; see Refs. [3,4]. In particular, the position operators
obey the commutation relations

½xμ; xν� ¼ iβJμν; ð1Þ

where Jμν are the generators of the Lorentz transformations
and β is a parameter of dimension length squared that sets
the scale of noncommutativity.1

In more recent times, the coproduct and star product
structures induced by the position operators of the Snyder
model were calculated [5,6] using ideas coming from the

development of noncommutative geometry [7]. However,
in the Snyder model the algebra of the position operators
does not close, as is evident from Eq. (1), and hence the
bialgebra resulting from the implementation of the cop-
roduct is not strictly speaking a Hopf algebra, as in other
noncommutative geometries. In particular, the coproduct is
not coassociative and the star product is not associative [5].
However, a closed Lie algebra can be obtained if one adds

to the position generators the generators of the Lorentz
algebra [6]. In this way, one can define a proper Hopf algebra
with a coassociative coproduct.2 The price to pay is the
addition to the formalism of tensorial degrees of freedom and
their conjugate momenta. To distinguish from the standard
noncommutative realization of the Snyder model [5], we
call the algebra where the Lorentz generators are added as
extended coordinates the extended Snyder algebra, and the
theory based on it the extended Snyder model. However, the
physical interpretation of the new degrees of freedom is not
evident; they may be viewed, for example, as coordinates
parametrizing extra dimensions [6].
In this paper, we construct new realizations of this

extended algebra, perturbatively in the parameter β. In
order to construct them, we define an extended Heisenberg
algebra, which includes the Lorentz generators and their
conjugate momenta. Then, we consider a Weyl realization
of the algebra in terms of the extended Heisenberg algebra,
and then generalize it to the most general one compatible
with Lorentz invariance at order β, including the one
obtained in Ref. [6], and compute the coproduct and the

*meljanac@irb.hr
†smignemi@unica.it
1Throughout this paper we adopt natural units ℏ ¼ c ¼ 1.

2Generally, Lie-deformed quantum Minkowski spaces admit
both Hopf algebra and Hopf algebroid structures [8].
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star product in the general case. We also calculate the twist
in the Weyl realization.
We recall here some of the most relevant recent advances

in Snyder theory: in Ref. [9] the Snyder algebra was
generalized in such a way to maintain Lorentz invariance;
the coproduct was calculated in Ref. [5]; in Ref. [6] the same
problem was investigated from a geometrical point of view,
using the fact that the momentum space of the Snyder model
can be identified with a coset space; and the twist was
investigated in Refs. [10,11]. The construction of a
field theory was first addressed in Refs. [5,6] and then
examined in more detail in Ref. [12]. Different applications
to phenomenology were considered in Ref. [13]. Finally, the
extension to a curved background was proposed in Ref. [14]
and further investigated in Ref. [15]. Also, the nonrelativistic
limit of the theory was studied in a large number of papers,
but we shall omit a discussion of this topic.
The paper is organized as follows. In Sec. II we introduce

the extended Snyder model and discuss its Weyl realization
in terms of an extended Heisenberg algebra. In Sec. III
we compute the coproduct and the star product in this
realization. In Sec. IV we calculate the twist. In Sec. V
generic realizations up to order β are introduced and
coproducts and star products are obtained. Finally, in
Sec. VI the relations of these realizations with that of
Ref. [6] and with well-known nonassociative ones are
discussed. In Sec. VII we draw our conclusions.

II. EXTENDED SNYDER MODEL
AND WEYL REALIZATION

As mentioned in the Introduction, the lack of associa-
tivity of the standard realization of the Snyder star
product is due to the fact that it is built in terms of the
position coordinates only, whose commutators do not close
[cf. Eq. (1)]. An associative realization of the Snyder model
can however be obtained by adding to the algebra generated
by the position coordinates x̂i the tensorial coordinates x̂ij,
identified with the Lorentz generators, so that they span the
closed algebra (2). In fact, all Lie-algebra-type noncom-
mutative spaces induce associative star products and the
coproducts of momenta are coassociative. This implies that
the star product that we obtain in the present framework in
Eqs. (26)–(27) is associative. If instead only the Di were
present in the star product, without the Dij, associativity
would be lost.
We consider the extended Snyder algebra generated by

the N position operators x̂i and the NðN − 1Þ=2 antisym-
metric Lorentz generators x̂ij, with i ¼ 0…; N − 1,

½x̂i; x̂j� ¼ iλβx̂ij; ½x̂ij; x̂k� ¼ iλðηikx̂j − ηjkx̂iÞ;
½x̂ij; x̂kl� ¼ iλðηikx̂jl − ηilx̂jk − ηjkx̂il þ ηjlx̂ikÞ; ð2Þ

where λ and β are real parameters. In particular, β can be
identified with the Snyder parameter, which is usually

assumed to be of size L2
p, while λ is a dimensionless

parameter. The parameter β can take both positive and
negative values, leading to quite different physical models.
However, from an algebraic point of view both cases can
be treated in an essentially unified way. For β ¼ 0, the
commutation relations (2) reduce to those of the standard
Lorentz algebra acting on commutative coordinates.
The algebra (2) can be realized in terms of an extended

Heisenberg algebra, which also includes the Lorentz
generators,

½xi; xj� ¼ ½pi; pj� ¼ ½xij; xkl� ¼ ½pij; pkl� ¼ 0;

½xi; pj� ¼ iηij; ½xij; pkl� ¼ iðηikηjl − ηilηjkÞ;
½xi; xjk� ¼ ½xi; pjk� ¼ ½xij; xk� ¼ ½xij; pk� ¼ 0; ð3Þ

where pi and pij are momenta canonically conjugate to xi
and xij respectively, and pij ¼ −pji. The momenta can be
realized in a standard way as

pi ¼ −i
∂
∂xi ; pij ¼ −i

∂
∂xij : ð4Þ

Note that, by including the momenta pi in the algebra (2)
with the commutation relations

½pi; pj� ¼ 0; ½x̂ij; pk� ¼ iλðηikpj − ηjkpiÞ;
½x̂i; pj� ¼ iðηij þ λ2βpipjÞ; ð5Þ

one recovers the full original Snyder algebra [2].
To proceed with the computations, it is convenient

to exploit the isomorphism between the extended Snyder
algebra and soð1; NÞ, and write the previous formulas in a
more compact from by defining, for positive β, x̂i≡ ffiffiffi

β
p

x̂iN ,
xi ≡ ffiffiffi

β
p

xiN , pi ≡ piN=
ffiffiffi
β

p
, with ηNN ¼ 1, and μ ¼

0;…N.3 The extended Heisenberg algebra (3) then
becomes

½xμν; xρσ� ¼ ½pμν; pρσ� ¼ 0;

½xμν; pρσ� ¼ iðημρηνσ − ημσηνρÞ; ð6Þ

while the extended Snyder algebra (2) takes the form

½x̂μν; x̂ρσ� ¼ iλCμν;ρσ;αβx̂αβ; ð7Þ

where Cμν;ρσ;αβ are the structure constants of the soð1; NÞ
algebra,

3When β < 0 the algebra is isomorphic to soð2; N − 1Þ. The
coordinates are defined in the same way, except that the absolute
value of β must be taken under the square root and ηNN ¼ −1. All
results are identical, with the appropriate choice of the sign of β.
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Cμν;ρσ;αβ ¼
1

2
½−ηνρðημαησβ − ησαημβÞ þ ημσðηραηνβ − ηναηρβÞ þ ημρðηναησβ − ησαημβÞ − ηνσðηραημβ − ημαηρβÞ�; ð8Þ

that satisfy the symmetry properties Cμν;ρσ;αβ ¼ −Cνμ;ρσ;αβ ¼ −Cμν;σρ;αβ ¼ −Cμν;ρσ;βα ¼ −Cρσ;μν;αβ ¼ −Cμν;αβ;ρσ.

In general, if the coordinates x̂μ generate a Lie algebra
½x̂μ; x̂ν� ¼ iCμνλx̂λ with structure constants Cμνλ, then the
universal realization of x̂μ corresponding to Weyl-symmetric
ordering is given by [16]

x̂μ ¼ xαϕαμðpÞ ¼ xα

�
C

1 − e−C

�
μα

; ð9Þ

where Cμν ¼ Cαμνpα. This realization enjoys the property

eikμx̂μ⊳1 ¼ eikμxμ ; kμ ∈ R; ð10Þ

where the action ⊳ is given by

xμ⊳fðxαÞ ¼ xμfðxαÞ; pμ⊳fðxaÞ ¼ −i
∂fðxaÞ
∂xμ ; ð11Þ

or, in our case,

xμν⊳fðxαβÞ ¼ xμνfðxαβÞ;

pμν⊳fðxαβÞ ¼ −i
∂fðxαβÞ
∂xμν ¼ ½pμν; fðxαβÞ�: ð12Þ

Hence, the corresponding Weyl realization of x̂μν in terms of
the extended Heisenberg algebra (6) reads [16]

x̂μν ¼ xαβ

�
λC

1 − e−λC

�
μν;αβ

¼ xμν þ
λ

2
xαβCμν;αβ þ

λ2

12
xαβðC2Þμν;αβ þOðλ4Þ; ð13Þ

where

Cμν;αβ ¼
1

2
Cρσ;μν;αβpρσ

¼ 1

2
ðημαpνβ − ημβpνα þ ηνβpμα − ηναpμβÞ;

ðC2Þμν;αβ ¼
1

2

X2
k¼0

�
2

k

�
ððpkÞμαðp2−kÞνβ − ðp2−kÞμβðpkÞναÞ;

ð14Þ

and pμν is written in matrix notation.

Inserting C into Eq. (13), we find up to order λ2

x̂μν ¼ xμν þ
λ

2
ðxμαpνα − xναpμαÞ

−
λ2

12
ðxμαpνβpαβ − xναpμβpαβ − 2xαβpμαpνβÞ: ð15Þ

One then has

½x̂μν; pρσ� ¼ iðημρηνσ − ημσηνρÞ

þ iλ
2
ðημρpνσ − ηνρpμσ þ ηνσpμρ − ημσpνρÞ

−
iλ2

12
ðημρpναpσα − ημσpναpρα − ηνρpμαpσα

þ ηνσpμαpρα þ 2pμρpνσ − 2pνρpμσÞ: ð16Þ

One can rewrite Eq. (15) in terms of its components as

x̂i ¼ xi þ
λ

2
ðxkpik − βxikpkÞ −

λ2

12
ðxκpklpil þ βð−xkpkpi

þ xip2
k − xikplpkl − 2xklpkpilÞÞ;

x̂ij ¼ xij þ
λ

2
ðxipj þ xikpjk − ði ↔ jÞÞ

−
λ2

12
ðxikpjlpkl − xklpikpjl − xipkpjk þ 2xkpipjk

þ βxikpkpj − ði ↔ jÞÞ: ð17Þ

In the limit λβ ¼ L2
p, λ ¼ 0, the algebra (2) becomes the

Doplicher-Fredenhagen-Roberts (DFR) (Moyal) algebra
[3] and the realization (15) takes the form

x̂i ¼ xi −
L2
p

2
xikpk; x̂ij ¼ xij: ð18Þ

The corresponding Lorentz generators are

Mij ¼ xipj − xjpi þ xikpjk − xjkpik: ð19Þ

III. COPRODUCT AND STAR PRODUCT
IN WEYL REALIZATION

In order to compute the coproduct of the Hopf algebra,
we use the formalism introduced in Ref. [17]. We define a
function PμνðtkαβÞ that satisfies the differential equation
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dPμν

dt
¼ i

2
½pμν; kρσ x̂ρσ�jp→PðtkÞ ¼ kρσΦμν;ρσðPαβÞ; ð20Þ

with the initial condition Pμνð0Þ ¼ qμν. The function
Φμν;ρσðpαβÞ is defined from Eq. (15) as x̂μν ¼ xρσΦρσ;μν.
In our case, Eq. (20) takes the form

dPμν

dt
¼ kμν −

λ

2
ðkμαPνα − kναPμαÞ

−
λ2

12
ðkμαPαβPνβ − kναPαβPμβ − 2kαβPμαPνβÞ

ð21Þ

and with the given initial condition has the solution

Pμν ¼ qμν þ tkμν −
λt
2
ðkμαqνα − kναqμαÞ

−
λ2

12
ððkμαqαβqνβ − kναqαβqμβ − 2kαβqμαqνβÞt

þ ðkμαkαβqνβ − kναkαβqμβ − 2kμαkνβqαβÞt2Þ: ð22Þ

We can now define Pμνðkμν; qμνÞ≡ Pμνðt ¼ 1Þ, so that

Pμνðkμν; qμνÞ ¼ kμν þ qμν −
λ

2
ðkμαqνα − kναqμαÞ

−
λ2

12
ðkμαqαβqνβ − kναqαβqμβ − 2kαβqμαqνβ

þ kμαkαβqνβ − kναkαβqμβ − 2kμαkνβqαβÞ:
ð23Þ

DefiningKμνðkμνÞ≡ Pμνðqμν ¼ 0Þ, one hasKμν ¼ kμν, and
therefore also its inverse function K−1

μν ðkμνÞ ¼ kμν.
It can be shown that the generalized momentum addition

law is given by [17]

kμν ⊕ qμν ≡Dμνðkαβ; qαβÞ ¼ PμνðK−1
αβ ; qαβÞ; ð24Þ

and hence in our case Dμνðkαβ; qαβÞ ¼ Pμνðkαβ; qαβÞ. This
yields the coproduct

Δpμν ¼ Dμνðpμν ⊗ 1; 1 ⊗ pμνÞ

¼ Δ0pμν −
λ

2
ðpμα ⊗ pνα − pνα ⊗ pμαÞ

−
λ2

12
ðpμα ⊗ pαβpνβ − pνα ⊗ pαβpμβ

− 2pαβ ⊗ pμαpνβ þ pμαpαβ ⊗ pνβ

− pναpαβ ⊗ pμβ − 2pμαpνβ ⊗ pαβÞ; ð25Þ

with Δ0pμν ¼ pμν ⊗ 1þ 1 ⊗ pμν. It is straightforward to
explicitly check the coassociativity of this coproduct. It is
also easy to see that the antipode is trivial, SðpμνÞ ¼ −pμν.
Recalling our definitions x̂i ¼

ffiffiffi
β

p
x̂iN and pi ¼ piN=

ffiffiffi
β

p
,

we can write the functions Dαβ in terms of their compo-
nents, namely,

Diðk; qÞ ¼ ki þ qi −
λ

2
½kjqij − kijqj� þ

λ2

12
½βðkikjqj − k2jqiÞ − kjkjkqik þ 2kikkjqjk

þ kijkjkqk þ βðkjqjqi − kiq2jÞ þ kijqjkqk − 2kjkqkqij − kjqjkqik�; ð26Þ

Dijðk; qÞ ¼ kij þ qij −
λ

2
½kikqjk þ βkiqj − ði ↔ jÞ� þ λ2

12
½kikkjlqkl − kikkklqjl þ βðkikkqjk − kikkkqj − 2kikjkqkÞ

þ kklqikqjl − kikqklqjl − βðkikqkqj − kiqkqjk − 2kkqiqjkÞ − ði ↔ jÞ�: ð27Þ

The functions Dðq; kÞ satisfy the symmetry properties

Diðq; kÞjλ ¼ Diðk; qÞj−λ; Dijðq; kÞjλ ¼ Dijðk; qÞj−λ: ð28Þ

It also holds that

e
i
2
kμνx̂μνe

i
2
qρσ x̂ρσ ¼ e

i
2
Dμνðk;qÞx̂μν ð29Þ

and

e
i
2
kμνxμν⋆ei

2
qρσxρσ ¼ e

i
2
kμνx̂μνe

i
2
qρσ x̂ρσ⊳1 ¼ e

i
2
Dμνðk;qÞx̂μν⊳1 ¼ e

i
2
Dμνðk;qÞxμν : ð30Þ

Moreover, we can write
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e
i
2
kμνx̂μν ¼ eikix̂iþi

2
kijx̂ij ;

eikixiþi
2
kijxij⋆eiqkxkþi

2
qklxkl ¼ eiDixiþi

2
Dijxij : ð31Þ

In particular, from Eqs. (26) and (27) one can obtain the star product for plane waves. Notice that the star product of two
translations clearly will also have a component in the direction of rotations,

eikixi⋆eiqjxj ¼ ei½kiþqi− 1
12
λ2βðq2j ki−kjqjqiþk2j qi−kjqjkiÞ�xi−i

2
λβkiqjxij ;

e
i
2
kijxij⋆ei

2
qklxkl ¼ e

i
2
½kijþqij−λkikqjk−1

6
λ2ðkikqklqjl−kklqikqjlþkikkklqjl−kikkjlqklÞ�xij ;

eikkxk⋆ei
2
qijxij ¼ ei½ki−

λ
2
kjqij− 1

12
λ2kjqjkqik�xiþi

2
½qijþ1

6
λ2βkikkqjk�xij ;

e
i
2
kijxij⋆ei

2
qkxk ¼ ei½qiþλ

2
kijqjþ 1

12
λ2kijkjkqk�xiþi

2
½kij−1

6
λ2βkikqkqj�xij : ð32Þ

This star product is associative. One can also check that the star products of the coordinates xi and xij satisfy the extended
Snyder algebra. In fact, according to Ref. [6], denoting for brevity k and q the vectors ki and qi and l, r the tensors lij and rij
and defining ek;l ¼ ekixiþljkxjk , the star product of the coordinates can be evaluated as follows:

xi⋆xj ¼
Z

dkdqdldrδðkÞδðqÞδðlÞδðrÞ∂ki∂qjðek;l⋆eq;rÞ ¼ x̂i⊳xj ¼ xixj þ i
λβ

2
xij;

xij⋆xkl ¼
Z

dkdqdldrδðkÞδðqÞδðlÞδðrÞ∂lij∂rklðek;l⋆eq;rÞ ¼ x̂ij⊳xkl ¼ xijxkl þ i
λ

2
ðηikxjl − ηjkxil − ηilxjk þ ηjlxikÞ;

xk⋆xij ¼
Z

dkdqdldrδðkÞδðqÞδðlÞδðrÞ∂kk∂rijðek;l⋆eq;rÞ ¼ x̂k⊳xij ¼ xkxij − i
λ

2
ðηikxj − ηjkxiÞ;

xij⋆xk ¼
Z

dkdqdldrδðkÞδðqÞδðlÞδðrÞ∂lij∂qkðek;l⋆eq;rÞ ¼ x̂ij⊳xk ¼ xijxk þ i
λ

2
ðηikxj − ηjkxiÞ: ð33Þ

Therefore,

½xi; xj�⋆ ¼ iλβxij; ½xij; xk�⋆ ¼ iλðηikxj − ηjkxiÞ; ½xij; xkl�⋆ ¼ iλðηikxjl − ηjkxil − ηilxjk þ ηjlxikÞ; ð34Þ

which is isomorphic to the algebra (2).

IV. TWIST FOR THE WEYL REALIZATION

In this section we construct the twist operator at second order in λ, using a perturbative approach. The twist is defined as a
bilinear operator such that Δh ¼ FΔ0hF−1 for each h ∈ soð1; NÞ.
The twist in a Hopf algebroid sense can be computed by means of the formula [10,18]

F−1 ≡ eF ¼ e−
i
2
pμν⊗xμνe

i
2
pρσ⊗x̂ρσ : ð35Þ

By the Baker-Campbell-Hausdorff formula eAeB ¼ eAþBþ1
2
½A;B�þ…, one gets

F ¼ i
2
pμν ⊗ ðx̂μν − xμνÞ −

1

8
pμνpρσ ⊗ ½xμν; x̂ρσ� þ � � � ; ð36Þ

where we can safely ignore further terms because it can be explicitly checked that they give contributions of order λ3.
Substituting Eq. (15) into Eq. (36), one obtains

F ¼ iλ
2
pαγ ⊗ xαβpγβ −

iλ2

24
ð2pαγ ⊗ xαβpβδpγδ − 2pγδ ⊗ xαβpαγpβδ − pαγpβδ ⊗ xαβpγδ þ pαγpδγ ⊗ xαβpδβÞ: ð37Þ
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Using the Hadamard formula eABe−A ¼ Bþ ½A;B� þ 1
2
½A; ½A;B�� þ � � �, it is easy to check that

FΔ0pμνF−1 ¼ Δpμν; ð38Þ

with Δpμν given in Eq. (25), as expected.

V. GENERIC REALIZATIONS

We now consider the most general realization of the commutation relations (2) in terms of the elements of the extended
Heisenberg algebra (3), up to second order in λ. Of course, this will deform the commutation relations between coordinates
and momenta in Eq. (5).
The generic form of the Lorentz-covariant combinations of the generators of the algebra (3), linear in xi, xij, up to order λ2

is given by4

x̂i ¼ xi þ λðβc0xikpk þ c1xkpikÞ þ λ2ðβðc2xip2
k þ c3xkpkpi þ c4xikpklpl þ c5xklpkpilÞ þ c6xkpklpilÞ;

x̂ij ¼ xij þ λðd0xikpjk þ d1xipj − ði ↔ jÞÞ þ λ2ðβd2xikpkpj þ d3xikpklpjl þ d4xklpikpjl

þ d5xipkpjk þ d6xkpikpj − ði ↔ jÞÞ: ð39Þ

In order to satisfy Eq. (2) to first order in λ one must have

c0 ¼ −
1

2
; d0 ¼

1

2
; c1 þ d1 ¼ 1: ð40Þ

Hence, at this order one has one free parameter. In particular, in the Weyl realization (17), d1 ¼ c1 ¼ 1
2
.

To second order in λ, one has ten new parameters c2;…; c6, d2;…; d6 that must satisfy the six independent relations

c1
2
− 2c2 þ c3 ¼ d1;

c1
2
þ c4 þ c5 ¼

1

2
; d3 − 2d4 ¼ −

1

4
;

c5 − d2 ¼
1

4
;

c1
2
þ c6 − d6 ¼ 0;

c1
2
− c1d1 þ c6 þ d5 ¼ 0: ð41Þ

Hence, up to second order one has five free parameters. For example, one may choose as free parameters c1, c2, c4, d4, and
d5, so that d1 ¼ 1 − c1 and

c3 ¼ 1 −
3c1
2

þ 2c2; c5 ¼
1

2
−
c1
2
− c4; c6 ¼

c1
2
− c21 − d5;

d2 ¼
1

4
−
c1
2
− c4; d3 ¼ −

1

4
þ 2d4; d6 ¼ c1 − c21 − d5: ð42Þ

It is easy to verify that the coefficients of the Weyl realization (17) satisfy the above relations with
c1 ¼ 1

2
, c2 ¼ −c4 ¼ −d4 ¼ −d5 ¼ − 1

12
.

Note that setting β ¼ 0 in Eq. (39), one obtains realizations of the Poincaré algebra. For example, the Weyl realization for
the operators x̂i and x̂ij of the Poincaré algebra becomes

x̂i ¼ xi þ
λ

2
xkpik −

λ2

12
xkpklpil;

x̂ij ¼ xij þ
�
λ

2
ðxipj þ xikpjkÞ −

λ2

12
ðxikpjlpkl − xklpikpjl − xipkpjk þ 2xkpipjkÞ − ði ↔ jÞ

�
: ð43Þ

Through the same procedure as in the previous section, one can determine the coproduct for the generic realization (39).
The differential equations for PiðtkÞ and PijðtkÞ are

4In principle, one may add further terms to Eq. (39), namely, the terms xipklpkl and xklpklpi to x̂i, and xijpkpk, xijpklpkl, xklpklpij,
xkpkpij to x̂ij. However, these terms must vanish if one requires that the Snyder algebra be satisfied.
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dPi

dt
¼ i

�
pi; kkx̂k þ

1

2
kklx̂kl

�����
p→PðtkÞ

;

dPij

dt
¼ i

�
pij; kkx̂k þ

1

2
kklx̂kl

�����
p→PðtkÞ

; ð44Þ

with initial conditionsPið0Þ ¼ qi andPijð0Þ ¼ qij. After some calculations, one can write down the functionsDiðk; qÞ and
Dijðk; qÞ that appear in the star product of plane waves,

Diðk; qÞ ¼ ki þ qi þ λð−c1kjqij þ d1kijqjÞ þ
λ2

2
½βðc0c1 þ c3Þk2jqi þ βð−c0c1 þ 2c2 þ c3Þkikjqj

þ ðc21 − c1d0 − c1d1 þ c6 þ d6Þkjkjkqik þ ðc1d0 þ c1d1 þ c6 − d5Þkikkjqjk
þ ðd21 þ d5 − d6Þkijkjkqk þ 2βc2kiq2j þ 2βc3kjqjqi þ 2d5kijqjkqk þ 2d6kjkqjqik þ 2c6kjqjkqik�; ð45Þ

and

Dijðk; qÞ ¼ kij þ qij þ λð−d0kikqjk þ βc0kiqj − ði ↔ jÞÞ þ λ2

2
½βð−c0c1 þ c4 − c5Þkikkqjk

þ ð−d20 þ d3 þ 2d4Þkikkklqjl þ ðd20 þ d3Þkikkjlqkl þ βðc0d0 þ c5 þ d2Þkikkkqj
þ βðc0d0 þ c0d1 þ c4 − d2Þkikjkqk þ 2βd2kikqkqj þ 2d3kikqklqjl þ 2d4kklqikqjl þ 2βc4kiqkqjk

þ 2βc5kkqikqj − ði ↔ jÞ�: ð46Þ

From these functions one can easily obtain the star product and the coproduct in the general case; see Eqs. (25) and (31). In
particular, for c0 ¼ − 1

2
and kij ¼ qij ¼ 0, one has

eikixi⋆eiqjxj ¼ ei½kiþqiþ1
2
λ2βð2c2q2j kiþ2c3kjqjqiþðc3−c1

2
Þk2j qiþð2c2þc3þc1

2
ÞkjqjkiÞ�xi−i

2
λβkiqjxij ; ð47Þ

which for c1 ¼ 1
2
, c2 ¼ −c3 ¼ − 1

12
reduces to the first relation in Eq. (32).

VI. COMPARISON WITH THE GIRELLI-LEVINE APPROACH

The authors of Ref. [6] studied our model in three-dimensional Euclidean space using geometric methods, with a very
different parametrization, adapted to the coset-space nature of the Snyder momentum space. In our notations, their star
product for plane waves, at second order in λ, takes the form

eikixi⋆eiqjxj ¼ exp

�
i

�
ki þ qi þ

λ2β

2
ðkjqjki þ k2jqi þ 2kjqjqiÞ

�
xi − i

λβ

2
kiqjxij

�
: ð48Þ

This expression corresponds to the realization (39) with
c0 ¼ − 1

2
, d0 ¼ 1

2
, and c1 ¼ c2 ¼ 0. It follows from Eq. (42)

that c3 ¼ 1, but the other coefficients are not determined
and depend on three free parameters. If one also requires
d5 ¼ 0, this may be called a generalized Snyder realization,
since it obeys all of the commutation relations of the
original Snyder model [2], given by Eqs. (2) and (5).
Note that the momenta pij do not appear in these relations.
Of course, additional commutation relations are obeyed
by the momenta pij, but they are not of interest for our
considerations.
One may consider more general realizations belonging to

the previous class, with c0 ¼ − 1
2
, d0 ¼ 1

2
, c1 ¼ 0, and three

free parameters. For example, c2 ¼ − 1
2
implies c3 ¼ 0 and

gives rise to a realization that, for d5 ¼ 0, reproduces at
order β the commutation relations of the Maggiore reali-
zation introduced in Ref. [9].
More generally, these representations generalize

those introduced in Ref. [10], with arbitrary c2 and
c3 ¼ 1þ 2c2. In particular, one can choose the free
parameters such that

x̂i ¼ xi þ
λ2β

2
½ðc3 − 1Þxip2

k þ 2c3xkpkpi� −
λβ

2
m̂ikpk;

x̂ij ¼ m̂ij þ λðxipj − xjpiÞ; ð49Þ
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where the m̂ij generate the Lorentz algebra soð1; N − 1Þ
and

½m̂ij; xk� ¼ ½m̂ij; pk� ¼ 0: ð50Þ

For example, in the Weyl realization of m̂ij, d3 ¼ −d4 ¼
− 1

12
, leaving c3 as a free parameter. In the limit β ¼ 0, x̂i

reduces to xi.

VII. CONCLUSIONS

The coalgebra usually associated with the Snyder model
is noncoassociative, and this fact prevents the definition of
a proper Hopf algebra, whose coproduct is by definition
coassociative. The reason is that the algebra of the position
operators of the Snyder model does not close. However,
this can be remedied by including the Lorentz generators in
the defining algebra [6]. In this way, a standard coasso-
ciative Hopf algebra can be defined.
In this paper we have studied the realizations of this

extended algebra in terms of the deformations of an
extended Heisenberg algebra, which contains tensorial
elements that in the deformation assume the role of
Lorentz generators. We have obtained the coproduct, the
star product, and the twist in the case of a Weyl realization.
We have also considered the most general realization of the
algebra up to second order in the expansion parameter λ (or,
equivalently, at first order in the Snyder parameter β) and
calculated the corresponding coproduct and star product.
Although this approach may be considered more rigorous

than the standard one from a mathematical point of view, the
physical interpretation of the new degrees of freedom, related

to the Lorentz generators and their momenta, is still an issue.
In Ref. [6] the tensorial coordinates xij were interpreted from
a Kaluza-Klein perspective as coordinates of extra dimen-
sions, and hence were not identified with Lorentz generators.
It is also important to note that the action of noncommutative
tensorial coordinates on Eq. (1) is defined to give commu-
tative tensorial coordinates [see Eqs. (30) and (33)]. The
noncommutative tensorial coordinates are related to the
parametrization of the dual Lorentz group. This topic is
presently being investigated.
In applications, one may for example build a field

theory assuming that the fields ψðx̂μνÞ depend only on the
spacetime coordinates [6], i.e., ψðxμνÞ ¼ ϕðx̂iÞδðx̂ijÞ.
However, in this way one would recover the usual non-
associative star product. Another possibility is that the
extra coordinates parametrize a compactified internal
space. In this case associativity would be preserved, but
nontrivial physical consequences would presumably arise.
We leave the investigation of this possibility for future
work. In any case, a field theory based on this formalism
could avoid the shortcomings due to the nonassociativity
of the star product [12], but different problems can arise
because of the intertwining between the position and the
extra degrees of freedom [6].
To conclude, we also observe that the standard commu-

tative theory, as well as DFR spacetime [3], can be
formulated in this extended framework, as we have
observed several times in the text. The investigation of
these elementary cases could be a good starting point to
better understand the physical implications of the present
formalism, in particular in relation to quantum field theory.
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