PHYSICAL REVIEW D 102, 126011 (2020)

Associative realizations of the extended Snyder model

S. Meljanac*
Rudjer Boskovi¢ Institute, Theoretical Physics Division BljeniCka c. 54, 10002 Zagreb, Croatia

S. Mignemi'

Dipartimento di Matematica, Universita di Cagliari via Ospedale 72, 09124 Cagliari, Italy
and INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy

® (Received 1 September 2020; accepted 13 November 2020; published 7 December 2020)

The star product usually associated with the Snyder model of noncommutative geometry is non-
associative, and this property prevents the construction of a proper Hopf algebra. It is however possible to

introduce a well-defined Hopf algebra by including the Lorentz generators and their conjugate momenta
into the algebra. In this paper, we study the realizations of this extended Snyder spacetime, and obtain the
coproduct and twist and the associative star product in a Weyl-ordered realization, to first order in the

noncommutativity parameter. We then extend our results to the most general realizations of the extended

Snyder spacetime, always up to first order.
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I. INTRODUCTION

Since the advent of quantum field theory there have
been proposals to add a new length scale to the theory in
order to solve the problems connected to ultraviolet
divergences. Later, the necessity of introducing a funda-
mental length scale also arose in several attempts to build
a theory of quantum gravity. In these cases, the scale could
be identified in a natural way with the Planck length

L,= /% ~1.6x107 m [1].

A naive application of the idea of a minimal length (such
as, for example, a lattice field theory) would however break
Lorentz invariance. A way to reconcile the discreteness of
spacetime with Lorentz invariance was originally proposed
by Snyder [2] a long time ago. This was the first example of
a noncommutative geometry: the length scale should enter
the theory through the commutators of spacetime coordi-
nates; see Refs. [3,4]. In particular, the position operators
obey the commutation relations

X X0 = i (1)

where J,,, are the generators of the Lorentz transformations
and f is a parameter of dimension length squared that sets
the scale of noncommutativity.'

In more recent times, the coproduct and star product
structures induced by the position operators of the Snyder
model were calculated [5,6] using ideas coming from the
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development of noncommutative geometry [7]. However,
in the Snyder model the algebra of the position operators
does not close, as is evident from Eq. (1), and hence the
bialgebra resulting from the implementation of the cop-
roduct is not strictly speaking a Hopf algebra, as in other
noncommutative geometries. In particular, the coproduct is
not coassociative and the star product is not associative [5].

However, a closed Lie algebra can be obtained if one adds
to the position generators the generators of the Lorentz
algebra [6]. In this way, one can define a proper Hopf algebra
with a coassociative coproduct.2 The price to pay is the
addition to the formalism of tensorial degrees of freedom and
their conjugate momenta. To distinguish from the standard
noncommutative realization of the Snyder model [5], we
call the algebra where the Lorentz generators are added as
extended coordinates the extended Snyder algebra, and the
theory based on it the extended Snyder model. However, the
physical interpretation of the new degrees of freedom is not
evident; they may be viewed, for example, as coordinates
parametrizing extra dimensions [6].

In this paper, we construct new realizations of this
extended algebra, perturbatively in the parameter f. In
order to construct them, we define an extended Heisenberg
algebra, which includes the Lorentz generators and their
conjugate momenta. Then, we consider a Weyl realization
of the algebra in terms of the extended Heisenberg algebra,
and then generalize it to the most general one compatible
with Lorentz invariance at order f, including the one
obtained in Ref. [6], and compute the coproduct and the

zGenerally, Lie-deformed quantum Minkowski spaces admit
both Hopf algebra and Hopf algebroid structures [8].
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star product in the general case. We also calculate the twist
in the Weyl realization.

We recall here some of the most relevant recent advances
in Snyder theory: in Ref. [9] the Snyder algebra was
generalized in such a way to maintain Lorentz invariance;
the coproduct was calculated in Ref. [5]; in Ref. [6] the same
problem was investigated from a geometrical point of view,
using the fact that the momentum space of the Snyder model
can be identified with a coset space; and the twist was
investigated in Refs. [10,11]. The construction of a
field theory was first addressed in Refs. [5,6] and then
examined in more detail in Ref. [12]. Different applications
to phenomenology were considered in Ref. [13]. Finally, the
extension to a curved background was proposed in Ref. [14]
and further investigated in Ref. [15]. Also, the nonrelativistic
limit of the theory was studied in a large number of papers,
but we shall omit a discussion of this topic.

The paper is organized as follows. In Sec. II we introduce
the extended Snyder model and discuss its Weyl realization
in terms of an extended Heisenberg algebra. In Sec. III
we compute the coproduct and the star product in this
realization. In Sec. IV we calculate the twist. In Sec. V
generic realizations up to order S are introduced and
coproducts and star products are obtained. Finally, in
Sec. VI the relations of these realizations with that of
Ref. [6] and with well-known nonassociative ones are
discussed. In Sec. VII we draw our conclusions.

II. EXTENDED SNYDER MODEL
AND WEYL REALIZATION

As mentioned in the Introduction, the lack of associa-
tivity of the standard realization of the Snyder star
product is due to the fact that it is built in terms of the
position coordinates only, whose commutators do not close
[cf. Eq. (1)]. An associative realization of the Snyder model
can however be obtained by adding to the algebra generated
by the position coordinates X; the tensorial coordinates %;,
identified with the Lorentz generators, so that they span the
closed algebra (2). In fact, all Lie-algebra-type noncom-
mutative spaces induce associative star products and the
coproducts of momenta are coassociative. This implies that
the star product that we obtain in the present framework in
Egs. (26)—(27) is associative. If instead only the D; were
present in the star product, without the D;;, associativity
would be lost.

We consider the extended Snyder algebra generated by
the N position operators %; and the N(N — 1)/2 antisym-
metric Lorentz generators X;;, with i =0...,N — 1,

Jo

j9
(%, %] = iApRy;, (%), %] = id(nuk; — njpki).
[?Afij» 5Ck1] = M(’?ik??jz - ﬂilfcjk - ﬂjkfciz + ﬂjlfcik), (2)

where 1 and f are real parameters. In particular,  can be
identified with the Snyder parameter, which is usually

assumed to be of size Lf,, while 1 is a dimensionless
parameter. The parameter f can take both positive and
negative values, leading to quite different physical models.
However, from an algebraic point of view both cases can
be treated in an essentially unified way. For f = 0, the
commutation relations (2) reduce to those of the standard
Lorentz algebra acting on commutative coordinates.

The algebra (2) can be realized in terms of an extended
Heisenberg algebra, which also includes the Lorentz
generators,

(X x;] = [pi pj] = [xij. x) = [Pijs Prt) = O,

[xi,Pj} = in;;, [xijvpkl] = i(’?ikﬂjl - ’7il’7jk>,

[xiaxjk} = [xi’ij] = [xijaxk] = [xij’Pk] =0, (3)
where p; and p;; are momenta canonically conjugate to x;

and x;; respectively, and p;; = —pj;. The momenta can be
realized in a standard way as

0 0
Pi=—l5-> pij =i . (4)
3x,» / 3x,-j

Note that, by including the momenta p; in the algebra (2)
with the commutation relations

[Pi, Pj] =0, [j\cij’ Pk] = M(’?ikpj - ’ijpi),
(%, pj] = i(ni; + /12/7’171'17,')’ (5)

one recovers the full original Snyder algebra [2].

To proceed with the computations, it is convenient
to exploit the isomorphism between the extended Snyder
algebra and so(1, N), and write the previous formulas in a

S

more compact from by defining, for positive 8, ; = /B,

xiE\/gxiN’ pi=pin/VB, with nyy =1, and u=
0,...N.” The extended Heisenberg algebra (3) then
becomes

[xﬂl/’xpa] = [p/tw ppa] - Oa
[x/w’ ppo‘] - i(nupr]uﬁ - nﬂanvp)’ (6)

while the extended Snyder algebra (2) takes the form

[)%ﬂchpa] = iﬂcﬂu,pa,aﬁj&aﬂ’ (7)
where C,, ,, s are the structure constants of the so(1,N)
algebra,

*When 8 < 0 the algebra is isomorphic to so(2, N — 1). The
coordinates are defined in the same way, except that the absolute
value of # must be taken under the square root and 7y = —1. All
results are identical, with the appropriate choice of the sign of /3.
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1

Cﬂzx,/m,a[)’ = E [_ny/l(nmxﬂnﬂ - 77(7(1’7;4/}) + 77;:(7 (77/)(17711/5 - ’71/(177/)/1) + ’1/4/) (771/(1’16[)’ - 77(7(1’1;4/3) - 771/0'(’7/)(1’7;4/} - 77/4(1’7/)[)’)]’ (8)

that satisfy the symmetry properties C,, po.0p = —Coppo.ap =

A

In general, if the coordinates %, generate a Lie algebra
[X,.%,] = iC,,,%, with structure constants C,,;, then the
universal realization of X, corresponding to Weyl-symmetric
ordering is given by [16]

C
5%;4 = xa¢aﬂ (p) = Xq (1 _ €_C> > (9)
ua

where C,, = C,,,, P, This realization enjoys the property

etkudup>1 = eikﬂx,,’ k

L ER, (10)

where the action > is given by

0
60 1(5) = 5/ (50). P f(e) = =120 ()
i
or, in our case,
x;tubf(xaﬂ> - x,uuf(xaﬂ)’
0f (xq
P ) = =00 ) (12)
v

Hence, the corresponding Weyl realization of %, in terms of
the extended Heisenberg algebra (6) reads [16]

R ( AC )
X = Xgp| ——=
w ap 1= e A vap

A 22
= x/u/ + Exaﬂcpu,aﬁ + E'xaﬂ(c2)yy.aﬂ + 0(24)’ (13)

where

1
C;w,aﬁ = 5 Cp(f,/w,aﬂpprf

1
= 5 (”/mpuﬁ ~NupPua + MupPua — nvapﬂﬂ)’

2
s =5 2 ) Ol = (07 s

k=0 k
(14)

and p,, is written in matrix notation.

-C

c

w.opap = ~Cuvpopa = ~Coopwap = ~Cuvappo

|
Inserting C into Eq. (13), we find up to order 4>

X = Xy +5 (x;mpya - xuap;m)

2
ﬂ2

- E (xﬂapy/}paﬁ ~ XvaPupPap — 2xa/}p;4apv/)’) . (15)
One then has

[%uw ppa] = i(r]ﬂpr/w - 'I/w”lup)
il
+ 5 (’]ﬂppl/o' ~NupPuc + MusPup — n,uo'pvp)
ir?
Y (nﬂppuapaa ~ NusPvalpa — NupPuaPoa
12

+ ﬂyﬂp;mppa + Zpﬂppyo- - 2pl//)pﬂ(7)' (16)
One can rewrite Eq. (15) in terms of its components as

. A A2
Xi=x;+ 5 (XkPik = Pxixpr) — B (XePuPi + P(=xkpipi

+ XD} — XixP1Pu — 2XPkPit))s

. A .
Xij = xij+ 5 (xipj + xppp — (i < J))

2
/12
12 (xikpjzpkz = XuPikPji — XiPkPjx + 2kaink
+ Bxppip; — (i < j)). (17)

In the limit A3 = L2, 1 = 0, the algebra (2) becomes the
Doplicher-Fredenhagen-Roberts (DFR) (Moyal) algebra
[3] and the realization (15) takes the form

L2

N P A
Xi =X — Txikpkv Xij = Xij- (18)

The corresponding Lorentz generators are

M;j = xipj — Xjpi + XiPjx — XjkDik- (19)

III. COPRODUCT AND STAR PRODUCT
IN WEYL REALIZATION

In order to compute the coproduct of the Hopf algebra,
we use the formalism introduced in Ref. [17]. We define a
function P, (tk,p) that satisfies the differential equation
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dP,, i N
d: B E[Pﬂmkpaxpa”p—ﬂ?(tk) = kpo@us po(Pap).  (20)

with the initial condition 7,,(0) = g,,. The function
®,, ,5(Pgp) is defined from Eq. (15) as %, = x,,®
In our case, Eq. (20) takes the form

POy

dP,, p

dr k;w - 5 (kﬂapva - kyap/m)

/12

- E (kyapaﬂpy/)’ - kD(lPaﬂpﬂﬂ - Zkaﬁpﬂapyﬂ)

(21)

and with the given initial condition has the solution

P = G thi = o (= )
2

12

+ (kuakapdup — kuakapdup — 2kuakipdop) ). (22)

( (k;m qaﬂ qzz/i - kya Qa/} Qﬂﬂ - 2kat/)’ qMa qzz/)’) t

We can now define P, (k,,.q,,) =P, (t = 1), so that

A
Pﬂy(kﬂyv qm,) = km/ + Qv — 5 (k;mqya - kUquﬂa)

2
)“2
- E (k/l(IQ(ZﬁQIJﬁ - kua‘]aﬁq/dﬁ - 2kr1/)’q;mquﬁ
+ kﬂakaﬁ’qw’ - kvakaﬂqldi - Zk/mkvﬁQaﬂ)'
(23)
|

Defining K, (k,,) = P,,(q,, = 0), one has C,, = k,,,, and

therefore also its inverse function K} (k,,) = k.
It can be shown that the generalized momentum addition
law is given by [17]

k/,w @ u = ;w(ka/;” Q(zﬁ) = Pﬂzx(lc;ﬂlv qgr/})v (24)

and hence in our case D, (Kup: 9op) = Puy(Kups Gap). This
yields the coproduct

Ap;w = D;w(p;w ®L1® p/w)

A
= AOPMD - 5 (p;m ® Pva— Pua ® pﬂd)
/12
_E<
- 2pa/3 ® PuaPup + PuaPap ® Pup

— PvaPap ® Pup — 2p/4apuﬁ ® paﬁ)ﬂ (25)

Pua @ PapPup — Pua @ PapPup

with Agp,, = p, ® 1 +1® p,,. It is straightforward to
explicitly check the coassociativity of this coproduct. It is
also easy to see that the antipode is trivial, S(p,,) = —p,,-

Recalling our definitions &; = \/B%;y and p; = pin//B
we can write the functions D, in terms of their compo-
nents, namely,

A A2
Dy(k.q) = ki +q; — 5 [ijIij - kiijj] + B [ﬁ(kikj(]j - kf%‘) —kikjrqix + 2kik;q

+ kijkirqe + B(k;q;q; — kiq?) + kijq g — 2k ik qrqi; — k9 kGl (26)
) 2
D;j(k,q) = ki; + q;j — o) (kieq i + Pkiq; — (i < j)] + T kick 1@ — kikiq i + P(kikeq jx — kickiq; — 2kikjiqr)
+ kuqud i = kixaud i — Pkiqrq; — kiqiq e — 2keqiqji) — (i < j)]. (27)

The functions D(q, k) satisfy the symmetry properties

Di(gq. k)|, = Di(k, q)| Dij(q.k)|; = Dij(k. q)| ;- (28)
It also holds that
St o5pops = EDu (k)3 (29)
and
ek s @3p0 e — o3kt ehlpotpe > = 3P k)i = 5D (k@)% | (30)

Moreover, we can write

126011-4



ASSOCIATIVE REALIZATIONS OF THE EXTENDED SNYDER ... PHYS. REV. D 102, 126011 (2020)

ezk,wx;,b — etki 5:,-+%'k[jjc,.j

tk iX; +2k,]x,] *elquk+zqklxkl — elD X; +2D Xij | (31)
In particular, from Egs. (26) and (27) one can obtain the star product for plane waves. Notice that the star product of two
translations clearly will also have a component in the direction of rotations,
eikiXi y pld%j — ei[kHr’Ii—r]zﬂzﬂ(Q§ki—qujqi+k§qi kjq ki) xi—2ABkiq;x i
ezkz,xlj*e%q“xkz — %[kij+%j_'1kikqjk_?l,ﬂz(kikalqjl_kklqiijl‘H{ikkkI’IjI_kikijle)]xij,
etk g g5 — pilki ak]‘h,—ﬁflzkjﬂljk(hk]xi+é[0ij+éizﬁkikklijk]xij

ezkuxtj *ezquk = e [qr*’zkuqf"'lzjL kzjk/qu]x +35 [kxj 5}” ﬁkqukq]]xu (32)

This star product is associative. One can also check that the star products of the coordinates x; and x;; satisfy the extended
Snyder algebra. In fact, according to Ref. [6], denoting for brevity k and g the vectors k; and g; and I, r the tensors /;; and r;;
and defining e, = e** ™%k the star product of the coordinates can be evaluated as follows:

XjhX; = /dkdqdldré(k)é( )6(1)8(r)0;, 0, (eraxey ) = Xi>x; = x;x; + i%xlj,

A
x,]*xkl = /dkdqdldr5 ( ) (1)5(1')81],‘/_3%(ek’l*eq.r) = jcijDXkl = x,-jxk, + i—

> (it = X = NanXjie + MjXixe)

N A
Xk X; /dkdqdldl'5 )8(q)o <l>5(r)8kkar,-j(ek,l*eq,r) = X BXi; = XX — lE(”Iikxj = NjXi),

A
Xjj*Xy = /dkdqdldr6 )8(q)8(1)3(r)h, 0y, (exaxeyr) = Xij>xi = X%, + ii (Mixx; — 1 jxx;)- (33)
Therefore,
[xi, x)], = i4Px;j, [Xijs Xi) o = iA(mix; — mjexi), [Xijs Xl = Ay = njeXi = naXje +njpx),  (34)

which is isomorphic to the algebra (2).

IV. TWIST FOR THE WEYL REALIZATION

In this section we construct the twist operator at second order in 4, using a perturbative approach. The twist is defined as a
bilinear operator such that Ah = FAghF~! for each h € so(1,N).
The twist in a Hopf algebroid sense can be computed by means of the formula [10,18]

f_l = eF — e_%puv®x;we%p/m®i/m_ (35)

By the Baker-Campbell-Hausdorff formula ee® = ¢ATBHABl+ - one gets

1 <
o PuvPpo 02 [xuwxpzf] + (36)

i .
F= AP ® (x;w _x/w) - 3

2

where we can safely ignore further terms because it can be explicitly checked that they give contributions of order 1°.
Substituting Eq. (15) into Eq. (36), one obtains

il iA?
F= Epay 2 XapPyp — 24 (Zpay ® XapPpsPys — 2py5 ® XapPayPps — PayPps ® XapPys + PayPsy ® xaﬁpﬁﬂ)' (37)
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Using the Hadamard formula e*Be™ = B + [A, B + 1[A,[A, B]] + - - -, it is easy to check that
fA()p;wf_l = Ap/wv (38)

with Ap,, given in Eq. (25), as expected.

V. GENERIC REALIZATIONS

We now consider the most general realization of the commutation relations (2) in terms of the elements of the extended
Heisenberg algebra (3), up to second order in A. Of course, this will deform the commutation relations between coordinates
and momenta in Eq. (5).

The generic form of the Lorentz-covariant combinations of the generators of the algebra (3), linear in x;, x;

7> up to order 4>
is given by4

% = x; + MPeoxipi + c1xepi) + A2 (B(crxipi + c3x,prPi + CaXiPruPr + CsXuPPil) + CeXxPuPil)-
Ri; = x;j + Mdoxppj + dixipj — (i < J)) + 2 (Bdoxyppp; + dsxipupji + daXupucl i
+dsxippjc + dexipikpj — (i < j)). (39)

In order to satisfy Eq. (2) to first order in 4 one must have

1 1
COI—E, d():E, C1+d1:]. (40)
Hence, at this order one has one free parameter. In particular, in the Weyl realization (17), d; = ¢| = %
To second order in A, one has ten new parameters c, ..., Cg, do, ..., dg that must satisfy the six independent relations
Cq C 1 1
E—2C2+C3:d1, E+C4+C5:§, d3—2d4:—1,
1 c c

C5—d221, 71+C6_d6:07 El_cld1+66+d5:0- (41)

Hence, up to second order one has five free parameters. For example, one may choose as free parameters c;, ¢, ¢4, dj, and
ds, so that d; =1 — ¢ and

c 1 ¢ c
C3:1—71+2C2, CSZE_?I_CA‘, C6:?1—C%—d5,
1 (o] 1 >
d2:Z—?—C4, d3 :—Z+2d4, d6:C1—C1 —d5. (42)

It is easy to verify that the coefficients of the Weyl realization (17) satisfy the above relations with
Cq :%, Cy = —Cy = —d4 = —d5 = —1—12
Note that setting f = 0 in Eq. (39), one obtains realizations of the Poincaré algebra. For example, the Weyl realization for

the operators %; and %;; of the Poincaré algebra becomes

. 2

Xp=x; + 5 ¥kPik =5 *kPuPil>

. A 2 .

Xij = X;; + ) (xipj + xikpjk) 1 (xikpjlpkl — XuPikPji — XiPkPjk + 2xkpipjk) — (i< Jj)|- (43)

Through the same procedure as in the previous section, one can determine the coproduct for the generic realization (39).
The differential equations for P;(rk) and P;;(tk) are

*In principle, one may add further terms to Eq. (39), namely, the terms x; py;py; and xy pyp; t0 X;, and X;; px Pi> Xij Pi Pkt Xt Prt Pij»
XiPrpij to &;;. However, these terms must vanish if one requires that the Snyder algebra be satisfied.
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dP;
dt
dPij _
dt

. I T
=1 |:Pi7 kX + 5 kklxkl]

. P
=1 |:pijv kixi + 3 kklxkl:|

’

p—P(tk)

. (44)
p—P(tk)

with initial conditions P;(0) = ¢, and P;;(0) = g;;. After some calculations, one can write down the functions D; (k, ¢) and

D;;(k, q) that appear in the star product of plane waves,

12
Di(k,q) = ki + q; + A(=c1k;q;; + dikijq;) + > [Bcocy + C3)k]2‘%' + B(=cocy + 2¢, + c3)kik;q;

+ (¢} = cydy — cydy + 6 + de)kikjxqy + (c1dy + c1dy 4 c6 — ds)kik;q 1
+ (d} + ds — dg)k;jk jqy + 2ﬂ02kiqu' + 2pcsk;q;q; + 2dsk;;q kg + 2dek g g + 2¢6k;qkqul.  (45)

and

R
Dyi(k.q) = kij + q;; + AM—=dokxq . + Pcokiq; — (i < j)) + > [B(=coct + ca = ¢s5)kikrq i
+ (=d§ + ds + 2dy ) kykiyq + (d§ + ds)kikjiqu + B(cody + cs + da)kixkrq;
+ B(cody + cody + ¢4 — dy)kik jrqy + 2Pdrkiqiq; + 2dskiguq i + 2dakiuqing i + 2Pcakiqiq i

+2fcskiqig; — (i < J)].

(46)

From these functions one can easily obtain the star product and the coproduct in the general case; see Eqs. (25) and (31). In

icular, for ¢ = —5 and k;; = ¢g;; = 0, one has
articular, for ¢, land k;j=¢q;; =0 h
ilki+qi 32 B(2e2q2ki+203k 9,0+ (c3—2)k2 g, +(2 Fkjq ki) xi—5pkiq;xi;
elklxl*elq-/x] — el[ !+ql+2 ﬂ( Cqu z+ C3 jq‘/ql+(c3 2) /ql+( CZ+C3+2) _/q_/ ,)])C, 2’ ﬁ lq_/xl/7 (47)
which for ¢; =1, ¢; = —c3 = —15 reduces to the first relation in Eq. (32).

VI. COMPARISON WITH THE GIRELLI-LEVINE APPROACH

The authors of Ref. [6] studied our model in three-dimensional Euclidean space using geometric methods, with a very
different parametrization, adapted to the coset-space nature of the Snyder momentum space. In our notations, their star

product for plane waves, at second order in A, takes the form

2p

e'ki¥ixel4/%i = exp [i <ki +ai+ Ty

This expression corresponds to the realization (39) with
co=—1dy =4 and ¢; = ¢, = 0. It follows from Eq. (42)
that c; = 1, but the other coefficients are not determined
and depend on three free parameters. If one also requires
ds = 0, this may be called a generalized Snyder realization,
since it obeys all of the commutation relations of the
original Snyder model [2], given by Egs. (2) and (5).
Note that the momenta p;; do not appear in these relations.
Of course, additional commutation relations are obeyed
by the momenta p;;, but they are not of interest for our
considerations.

One may consider more general realizations belonging to
the previous class, with ¢g = —1, dy = 3, ¢; = 0, and three

A
(k;qk; + k?qi + ijqj‘h))xi - ljﬂkinxij] . (48)

free parameters. For example, ¢, = —% implies ¢; = 0 and
gives rise to a realization that, for ds = 0, reproduces at
order f the commutation relations of the Maggiore reali-
zation introduced in Ref. [9].

More generally, these representations generalize
those introduced in Ref. [10], with arbitrary ¢, and
¢c3 =142¢,. In particular, one can choose the free
parameters such that

A /12’8 ﬂﬁ S
% = xi+ - [(e3 = Dxipy + 2e3xpipi] = 5 M
Xij = gj + Axip; = x;p;). (49
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where the 7;; generate the Lorentz algebra so(1,N — 1)
and

[, xi] = [, pi] = 0. (50)

For example, in the Weyl realization of 7;;, d3 = —dy
- 5 leaving c5 as a free parameter. In the limit g = 0,

reduces to x;.

~
i

VII. CONCLUSIONS

The coalgebra usually associated with the Snyder model
is noncoassociative, and this fact prevents the definition of
a proper Hopf algebra, whose coproduct is by definition
coassociative. The reason is that the algebra of the position
operators of the Snyder model does not close. However,
this can be remedied by including the Lorentz generators in
the defining algebra [6]. In this way, a standard coasso-
ciative Hopf algebra can be defined.

In this paper we have studied the realizations of this
extended algebra in terms of the deformations of an
extended Heisenberg algebra, which contains tensorial
elements that in the deformation assume the role of
Lorentz generators. We have obtained the coproduct, the
star product, and the twist in the case of a Weyl realization.
We have also considered the most general realization of the
algebra up to second order in the expansion parameter 4 (or,
equivalently, at first order in the Snyder parameter /) and
calculated the corresponding coproduct and star product.

Although this approach may be considered more rigorous
than the standard one from a mathematical point of view, the
physical interpretation of the new degrees of freedom, related

to the Lorentz generators and their momenta, is still an issue.
In Ref. [6] the tensorial coordinates x;; were interpreted from
a Kaluza-Klein perspective as coordinates of extra dimen-
sions, and hence were not identified with Lorentz generators.
It is also important to note that the action of noncommutative
tensorial coordinates on Eq. (1) is defined to give commu-
tative tensorial coordinates [see Eqgs. (30) and (33)]. The
noncommutative tensorial coordinates are related to the
parametrization of the dual Lorentz group. This topic is
presently being investigated.

In applications, one may for example build a field
theory assuming that the fields y(%,,) depend only on the
spacetime coordinates [6], i.e., w(x,) = ¢(%;)5(%;).
However, in this way one would recover the usual non-
associative star product. Another possibility is that the
extra coordinates parametrize a compactified internal
space. In this case associativity would be preserved, but
nontrivial physical consequences would presumably arise.
We leave the investigation of this possibility for future
work. In any case, a field theory based on this formalism
could avoid the shortcomings due to the nonassociativity
of the star product [12], but different problems can arise
because of the intertwining between the position and the
extra degrees of freedom [6].

To conclude, we also observe that the standard commu-
tative theory, as well as DFR spacetime [3], can be
formulated in this extended framework, as we have
observed several times in the text. The investigation of
these elementary cases could be a good starting point to
better understand the physical implications of the present
formalism, in particular in relation to quantum field theory.
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