Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1097948

EEG characteristics in patients with affective disorder


Mulc, Damir; Vukojević, Jakša; Kinder, Ivana; Friganović, Krešimir; Vidović, Domagoj; Brečić, Petrana; Cifrek, Mario
EEG characteristics in patients with affective disorder // European Neuropsychopharmacology, Vol. 40, Suppl. 1 (2020)
Amsterdam: Elsevier, 2020. str. S226-S226 doi:10.1016/j.euroneuro.2020.09.294 (poster, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 1097948 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
EEG characteristics in patients with affective disorder

Autori
Mulc, Damir ; Vukojević, Jakša ; Kinder, Ivana ; Friganović, Krešimir ; Vidović, Domagoj ; Brečić, Petrana ; Cifrek, Mario

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
European Neuropsychopharmacology, Vol. 40, Suppl. 1 (2020) / - Amsterdam : Elsevier, 2020, S226-S226

Skup
33rd European College of Neuropsychopharmacology Congress ( ECNP)

Mjesto i datum
Beč, Austrija; online, 12.09.2020. - 15.09.2020

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
affective disorder ; EEG ; depressive disorder ; bipolar disorder ; machine learning ; wave entropy

Sažetak
The aim of the study was to identify specific characteristics of EEG recordings that could be used as potential biomarkers for major depressive disorder or bipolar disorder. For that purpose we have included 30 healthy participants whose EEG recordings were compared with 30 patients diagnosed with major depressive disorder and 10 patients diagnosed with bipolar disorder, both according to the ICD-10 criteria and all of which did a native EEG recording on the day of the admission in the hospital. Our findings confirm some of the previous studies, validating the importance of some characteristics of theta and gamma waves in depression detection, but also disputed some earlier studies regarding relative wavelet energy. Furthermore, our research suggests that wave entropy in beta band wave on the Cz position is a good independent predictor of depression as well as wave entropy of delta band wave on position F7, which also had high predictive accuracy. We did not find any reliable predictors for bipolar disorder. Alongside these findings, we employed machine learning methodology in correlating clinical characteristics and EEG findings.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Kliničke medicinske znanosti, Kognitivna znanost (prirodne, tehničke, biomedicina i zdravstvo, društvene i humanističke znanosti)



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Medicinski fakultet, Zagreb,
Klinika za psihijatriju Vrapče

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Mulc, Damir; Vukojević, Jakša; Kinder, Ivana; Friganović, Krešimir; Vidović, Domagoj; Brečić, Petrana; Cifrek, Mario
EEG characteristics in patients with affective disorder // European Neuropsychopharmacology, Vol. 40, Suppl. 1 (2020)
Amsterdam: Elsevier, 2020. str. S226-S226 doi:10.1016/j.euroneuro.2020.09.294 (poster, međunarodna recenzija, sažetak, znanstveni)
Mulc, D., Vukojević, J., Kinder, I., Friganović, K., Vidović, D., Brečić, P. & Cifrek, M. (2020) EEG characteristics in patients with affective disorder. U: European Neuropsychopharmacology, Vol. 40, Suppl. 1 (2020) doi:10.1016/j.euroneuro.2020.09.294.
@article{article, author = {Mulc, Damir and Vukojevi\'{c}, Jak\v{s}a and Kinder, Ivana and Friganovi\'{c}, Kre\v{s}imir and Vidovi\'{c}, Domagoj and Bre\v{c}i\'{c}, Petrana and Cifrek, Mario}, year = {2020}, pages = {S226-S226}, DOI = {10.1016/j.euroneuro.2020.09.294}, keywords = {affective disorder, EEG, depressive disorder, bipolar disorder, machine learning, wave entropy}, doi = {10.1016/j.euroneuro.2020.09.294}, title = {EEG characteristics in patients with affective disorder}, keyword = {affective disorder, EEG, depressive disorder, bipolar disorder, machine learning, wave entropy}, publisher = {Elsevier}, publisherplace = {Be\v{c}, Austrija; online} }
@article{article, author = {Mulc, Damir and Vukojevi\'{c}, Jak\v{s}a and Kinder, Ivana and Friganovi\'{c}, Kre\v{s}imir and Vidovi\'{c}, Domagoj and Bre\v{c}i\'{c}, Petrana and Cifrek, Mario}, year = {2020}, pages = {S226-S226}, DOI = {10.1016/j.euroneuro.2020.09.294}, keywords = {affective disorder, EEG, depressive disorder, bipolar disorder, machine learning, wave entropy}, doi = {10.1016/j.euroneuro.2020.09.294}, title = {EEG characteristics in patients with affective disorder}, keyword = {affective disorder, EEG, depressive disorder, bipolar disorder, machine learning, wave entropy}, publisher = {Elsevier}, publisherplace = {Be\v{c}, Austrija; online} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font