Pregled bibliografske jedinice broj: 1097948
EEG characteristics in patients with affective disorder
EEG characteristics in patients with affective disorder // European Neuropsychopharmacology, Vol. 40, Suppl. 1 (2020)
Amsterdam: Elsevier, 2020. str. S226-S226 doi:10.1016/j.euroneuro.2020.09.294 (poster, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1097948 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
EEG characteristics in patients with affective
disorder
Autori
Mulc, Damir ; Vukojević, Jakša ; Kinder, Ivana ; Friganović, Krešimir ; Vidović, Domagoj ; Brečić, Petrana ; Cifrek, Mario
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
European Neuropsychopharmacology, Vol. 40, Suppl. 1 (2020)
/ - Amsterdam : Elsevier, 2020, S226-S226
Skup
33rd European College of Neuropsychopharmacology Congress ( ECNP)
Mjesto i datum
Beč, Austrija; online, 12.09.2020. - 15.09.2020
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
affective disorder ; EEG ; depressive disorder ; bipolar disorder ; machine learning ; wave entropy
Sažetak
The aim of the study was to identify specific characteristics of EEG recordings that could be used as potential biomarkers for major depressive disorder or bipolar disorder. For that purpose we have included 30 healthy participants whose EEG recordings were compared with 30 patients diagnosed with major depressive disorder and 10 patients diagnosed with bipolar disorder, both according to the ICD-10 criteria and all of which did a native EEG recording on the day of the admission in the hospital. Our findings confirm some of the previous studies, validating the importance of some characteristics of theta and gamma waves in depression detection, but also disputed some earlier studies regarding relative wavelet energy. Furthermore, our research suggests that wave entropy in beta band wave on the Cz position is a good independent predictor of depression as well as wave entropy of delta band wave on position F7, which also had high predictive accuracy. We did not find any reliable predictors for bipolar disorder. Alongside these findings, we employed machine learning methodology in correlating clinical characteristics and EEG findings.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Kliničke medicinske znanosti, Kognitivna znanost (prirodne, tehničke, biomedicina i zdravstvo, društvene i humanističke znanosti)
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Medicinski fakultet, Zagreb,
Klinika za psihijatriju Vrapče
Profili:
Mario Cifrek
(autor)
Petrana Brečić
(autor)
Domagoj Vidović
(autor)
Krešimir Friganović
(autor)
Jakša Vukojević
(autor)
Damir Mulc
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE