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Abstract

We define distributions of anisotropic order on manifolds, and establish their imme-
diate properties. The central result is the Schwartz kernel theorem for such distributions,
allowing the representation of continuous operators from Cl

c(X) to (Cm
c (Y ))′ by kernels,

which we prove to be distributions of order l in x, but higher, although still finite, order
in y.

Our main motivation for introducing these distributions is to obtain the new result
that H-distributions (Antonić and Mitrović, 2011), a recently introduced generalisation
of H-measures are, in fact, distributions of order 0 (i.e. Radon measures) in x ∈ Rd,
and of finite order in ξ ∈ Sd−1. This allows us to obtain some more precise result-
s on H-distributions, hopefully allowing for further applications to partial differential
equations.
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Distributions of anisotropic order and applications

1. Introduction

Motivation

The first ideas of notions of generalised functions can be traced back to the eighteen century.
Although many mathematicians contributed to the development of the theory, its precise form
which is widely accepted nowadays, the notion of the distribution, emerged during the Second
world war in the studies of Laurent Schwartz, based on the duality theory in functional analysis.
In a matter of several years, it proved to be a powerful tool in the study of partial differential
equations: let us just mention the Malgrange-Ehrenpreis theorem on the existence of elementary
solutions.

The theory of distributions allowed some particular, already known results in mathematical
analysis to be written in an abstract general form. For example, it was known that a continuous
linear mapping u 7→ v between two Banach function spaces could in many (but not all) cases be
represented in terms of a kernel k, such that (with a suitable notion of the integral) one had

v(x) =

∫
k(x, y)u(y)dy .

The Schwartz kernel theorem states that such a kernel always exists for operators between spaces
of distributions, provided that the kernel is allowed to be a distribution itself, facilitating the
extension of the important notion of integral operators to the case of singular kernels. In partic-
ular, as a consequence of the kernel theorem, all pseudodifferential operators can be understood
as integral operators with a distributional kernel (see, e.g., [37, Chapter 6]).

More precisely, the theorem states that any continuous bilinear form on the Cartesian product
of distributional spaces can be represented as a unique distribution in both variables, and vice
versa. There are several approaches in proving this theorem, and let us mention just a few: via the
decomposition into orthonormal series (see, e.g., [16]), the abstract approach via nuclear spaces
due to Alexander Grothendieck (e.g., [39]), and the original Schwartz’s proof (cf. [34, 13]).

The kernel theorem played an important role in Tartar’s construction of H-measures [38],
which was the starting point that motivated our research in this direction. H-measures were in-
troduced by Luc Tartar and independently by Patrick Gérard [17], who called them microlocal
defect measures, to study oscillation and concentration effects in partial differential equations. As
opposed to Young measures, the H-measures are able to capture propagation effects [1]. In fact,
they are (possibly unbounded) positive Radon measures, being positive distributions on Rd×Sd−1

[35, Section I.4]. On the other hand, any positive Radon measure on (the cospherical bundle)
Rd × Sd−1 can be obtained as an H-measure generated by a weakly converging L2 sequence of
functions defined on Rd [38, Corollary 2.3]. For some variants of H-measures tailored to parabolic
problems see [5], and for further generalisations [14, 3, 31, 32]. However, they are suitable only
for problems expressed in the L2 framework.

In order to overcome that limitation, H-distributions were introduced [7], which are an ex-
tension of H-measures to the Lp − Lq context. The existence proof in [7] was based on the
classical Schwartz kernel theorem, giving that H-distributions were only general distributions in
D′(Rd × Sd−1), as we lack the positivity here (contrary to the L2 case). However, in the com-
munity there has been no consensus whether to expect that H-distributions are actually Radon
measures, as all the available examples so far have been such. In this paper we address this
problem and provide (almost) complete answer.

The precise analytic properties of these objects are our main application of the developed
theory: these objects (in general) are not Radon measures, but anisotropic distributions, of zero
order in x (usually taken to be in the Euclidean space Rd) and given finite order in ξ taken
on the unit sphere Sd−1, therefore allowing for applications to partial differential equations with
continuous coefficients. Some further variants and existing applications of H-distributions are
related to the mixed-norm Lebesgue spaces [4], the velocity averaging [22] and Lp−Lq compactness
by compensation [25].
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Another attempt to extend H-measures in order to encompass Lp weakly converging sequences
[33] was based on the extension of generalised Young measures of DiPerna and Majda tomicrolocal
compactness forms, which turn out to be closely connected to H-distributions [8].

While we introduced the distributions of anisotropic order with a precise goal of better
understanding the H-distributions, namely to precisely formulate how far they are from being
Radon measures (i.e. the distributions of order zero), this new notion, together with a more precise
form of the Schwartz kernel theorem, can be of interest on its own [24, 26]. More precisely, in [24]
a notion of anisotropic distributions was crucial in extending a coordinate-free characterisation
of partial differential operators, where every linear operator on C∞

c which does not increase the
support is understood to be a partial differential operator.

Overview of the paper

In order to precisely determine what kind of objects H-distributions are, we need the notion
of distributions of anisotropic (finite) order on manifolds without boundary (not necessarily C∞

smooth), which we introduce in the next section, together with some immediate properties. The
third section is devoted to the proof of the Schwartz kernel theorem for distributions of anisotropic
order. Let us stress that the spaces we consider are not nuclear, so powerful abstract approach
of Grothendieck is not applicable in our case. The kernel theorem is necessary prerequisite for a
precise version of the existence of H-distributions presented in the fourth section, together with its
basic properties, like the criterion for strong convergence and the connection to defect measures.
Our abstract result has an important practical consequence: when applying H-distributions to
partial differential equations, we are now able to assume only continuity of coefficients in the
equations, not being limited to the C∞ case.

An important example of a weakly converging sequence is concentration, which is treated in
the fifth section, providing an example of an H-distribution which is not a Radon measure on Ω×
Sd−1, thus justifying the introduction of distributions of anisotropic order. This is followed by the
investigation how a perturbation of generating sequences can still preserve the H-distribution, by
some comments on using different symbols and on applications of compactness by compensation.

Finally, we would like to mention that a preliminary version of some results presented in this
paper was a part of Marin Mǐsur’s Ph.D. thesis [23].

Notation

Before we proceed, let us introduce the notation which we shall use in the paper. By û and
Fu we shall denote the Fourier transform of u: û(ξ) = (Fu)(ξ) =

∫
Rd e

−2πix·ξu(x)dx, and by ǔ
and F̄u it’s inverse, while by Aψ the Fourier multiplier operator with symbol ψ: Aψ(u) = (ψû)∨.

In what follows, we shall use Fourier multiplier operators defined by functions on the unit
sphere Sd−1 in Rd. Whenever we say that a function ψ ∈ Cκ(Sd−1) is a symbol of the Fourier
multiplier operator (denoted Aψ), we shall actually mean that the symbol is ψ ◦ π, a function
homogeneous of order zero on Rd

∗ := Rd \ {0}, where π : Rd
∗ −→ Sd−1 is the projection onto unit

sphere along rays: π(ξ) := ξ/|ξ|. By the Hörmander-Mihlin theorem, if κ > ⌊d/2⌋ + 1, such an
operator Aψ is bounded on Lp(Rd) for any p ∈ 〈1,∞〉 = {p ∈ R : 1 < p}, and we have the bound
for the operator norm of Aψ : Lp(Rd) −→ Lp(Rd) [18, Example 5.2.6.] (see also [4, Theorem 7]
for the mixed-norm case):

‖Aψ‖Lp→Lp 6 Cdmax
{
p,

1

p− 1

}
‖ψ‖Cκ(Sd−1) .

It is known that in some particular cases κ can be taken to be less than ⌊d/2⌋+1 (cf. [12] for the
case when d = 2).

For p ∈ [1,∞], by Lploc(R
d) we denote the space of all distributions u such that the following

holds

(∀ϕ ∈ C∞
c (Rd)) ϕu ∈ Lp(Rd) .
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Actually, C∞
c (Rd) can be reduced to G, its subset such that (∀x ∈ Rd)(∃ϕ ∈ G) Re ϕ(x) > 0,

which can be chosen to be countable. We endow it with the locally convex topology induced by
a family of seminorms | · |ϕ,p (for ϕ ∈ G)

|u|ϕ,p := ‖ϕu‖Lp(Rd) .

It can be shown that neither the definition of Lploc(R
d) nor its topology depend on the choice of

family G with the above property. This definition is equivalent to a definition where one requires
that Lploc functions have finite Lp norms over every compact subset of Rd (indeed, we can take G
to consist of all characteristic functions χK of compacts K ⊆ Rd and notice that smoothness is
not actually needed for the definition of Lploc(R

d) space).
We say that a sequence (un) is bounded in Lploc(R

d) if for every seminorm | · |ϕ,p there exists
Cϕ,p > 0 such that |un|ϕ,p < Cϕ,p uniformly in n. By choosing a countable G = {ϑl : l ∈ N}
such that 0 6 ϑl 6 1 and χKl

6 ϑl 6 χKl+1
, where Kl := K[0, l] ⊆ Rd is a closed ball of radius l

centred around the origin, we can define a metric dp on Lploc(R
d) by

dp(u, v) := sup
l∈N

2−l
|u− v|ϑl,p

1 + |u− v|ϑl,p
.

With this metric, Lploc(R
d) is a Fréchet space for each p ∈ [1,∞], separable for p ∈ [1,∞〉 and

reflexive for p ∈ 〈1,∞〉. For p ∈ [1,∞〉 it is also valid that C∞
c (Rd) is dense in Lploc(R

d); we also

define its dual exponent p′ such that 1/p+1/p′ = 1, and then (for p <∞) Lp
′

(Rd) is the dual of

Lp(Rd), while Lp
′

c (Rd) is a subspace of Lp
′

(Rd) consisting of all functions in that space having a
compact support, equipped with the topology of strict inductive limit

Lp
′

c (R
d) =

⋃

l∈N

Lp
′

Kl
(Rd) ,

and it is the dual of Lploc(R
d). Of course, we define

Lp
′

Kl
(Rd) :=

{
f ∈ Lp

′

(Rd) : supp f ⊆ Kl

}
∼ Lp

′

(Kl) ,

and we equip it with the Lp
′

norm topology. Let us just remark that we could have replaced Rd

by any open set Ω ⊆ Rd and all of the above definitions and conclusions would remain valid. For
omitted proofs and further references, we refer the interested reader to [2].

Our last points regarding the notation are that by ⊠ we shall denote the tensor product,
while by 〈·, ·〉 we shall denote various duality products, always assuming that it is bilinear. In
particular, this means that its relation to the L2 scalar product (which we take to be antilinear
in the first variable) is as follows

〈 f | g 〉L2 =

∫
f(x)g(x)dx = 〈f̄ , g〉 .

2. Distributions of anisotropic order

Functions differentiable of order l in one variable x, and differentiable of order m in the
other variable y, can easily be defined. This notion has been extended to Sobolev functions
(see e.g. [29]). However, in the theory of distributions of finite order such distinction, up to our
knowledge, has never been made before.

As the objects of our primary interest will turn out to be distributions of order zero in x

variable, and distributions of order m ∈ N in another variable ξ (actually, ξ ∈ Sd−1), in this
section we shall sketch such a definition for general differential manifolds X and Y , and extend
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the classical proofs (cf. [9, 13, 21, 35]) to this situation (having also in mind some further possible
variants of H-distributions).

We shall first precisely define the spaces of test functions on the flat space and then distri-
butions, as appropriate duals of those spaces. In the next step we shall extend these definitions
to product manifolds. In fact, we shall show how the case of manifolds can be reduced to the flat
space, as usual. Based on this, we shall show that most of the standard properties of distributions
of finite order carry on to this case as well. While the results for distributions of (isotropic) finite
order in the flat space have already been presented in Schwartz’s book [35], for their extension
to manifolds we shall primarily refer to Dieudonné’s treatise [13] (some readers might wish to
consult [20] as well).

Distributions of anisotropic order on the flat space

Let Ω ⊆ Rd
x×Rr

y be an open set. For l,m ∈ N0, by Cl,m(Ω) (we are aware that this notation
is often used for Hölder spaces; however, we shall not use Hölder spaces in this paper at all, so this
simple notation should not cause any confusion) we denote the space of functions f on Ω, such

that for any α ∈ Nd
0 and β ∈ Nr

0, if |α| 6 l and |β| 6 m, ∂α,βf = ∂αx ∂
β
y f ∈ C(Ω). Of course, by

the Schwarz theorem, the order in which derivatives are taken is not important. Here we follow
the convention C0,0(Ω) = C(Ω). By C∞,m(Ω) and Cl,∞(Ω) we denote the intersection of the
decreasing sequence of spaces (Ck,m(Ω))k and (Cl,k(Ω))k, respectively, while C

∞,∞(Ω) := C∞(Ω).
Thus, we shall be able to consider l,m ∈ N0 ∪ {∞} in the sequel. In order to make our notation
simpler, on N0∪{∞} we define a partial order as an extension of the standard one together with
k 6 ∞, k ∈ N0 ∪ {∞}.

By choosing a sequence of nested compact sets Kn in Ω, such that Ω =
⋃
n∈NKn and

Kn ⊆ IntKn+1 (by IntA we denote the interior of set A), for f ∈ Cl,m(Ω) we define

(1) pl,mKn
(f) := max

|α|6l,|β|6m
‖∂α,βf‖L∞(Kn) .

It is clear that each pl,mKn
is a seminorm on Cl,m(Ω), while considering the (increasing in n ∈ N)

sequence of these seminorms, Cl,m(Ω) becomes a locally convex (Hausdorff) metrisable topological
vector space. This space has the topology of uniform convergence on compact sets of functions
and their derivatives up to order l in x and m in y.

In the classical (isotropic) case, instead of pl,mKn
we simply take the seminorms

(2) plKn
(f) := max

|α|6l
‖∂αf‖L∞(Kn) ,

which we shall explicitly use for comparison below.
If l = ∞, instead of seminorms in (1), we take the following sequence of seminorms on

C∞,m(Ω):

pn,mKn
(f) := max

|α|6n,|β|6m
‖∂α,βf‖L∞(Kn) ,

and similarly for m = ∞ (of course, l = m = ∞ reduces to the standard isotropic case of C∞(Ω)).
In fact, we have the following theorem, where in the proof we follow [13, 17.1.2] (covering the
isotropic case).

Theorem 1. For l,m ∈ N0 ∪ {∞} the spaces Cl,m(Ω) are separable Fréchet spaces. More
precisely, there exists a sequence of functions in C∞(Ω), with compact supports contained in Ω,
which is dense in each of the spaces Cl,m(Ω).

Dem. Let (fk) be a Cauchy sequence in Cl,m(Ω). For a fixed (x,y) ∈ Ω, the sequence of numbers
fk(x,y) forms a Cauchy sequence in C, so it converges to a number, which we denote by f(x,y).
This pointwise limit f is a bounded function on each compact Kn, where (fk) uniformly converges
to f , so f is also a continuous function on each Kn, therefore on Ω as well.
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The above argument can be repeated for ∂(α,β)fk, with |α| 6 l and |β| 6 m, providing us with
continuous functions f (α,β), which are uniform limits of ∂(α,β)fk on each Kn. By the well known
result on uniform limits of derivatives, this allows us to identify the derivatives ∂(α,β)f = f (α,β),
and then to conclude that (fk) converges to f in Cl,m(Ω).

In order to construct a dense set, we start with the well known fact that there is a countable
set {uk ∈ Cc(Ω) : k ∈ N} which is dense in C(Ω); furthermore, let ρκ(x,y) := κd+rρ(κx, κy)
be the standard regularising sequence, where smooth ρ > 0 is supported in K[0, 1]. Now we can
define functions vk,κ := ρκ ∗ uk, which are well defined for large enough κ (depending on the
support of uk), and in that case are smooth and compactly supported in Ω. We claim that these
functions vk,κ form a dense set G in any Cl,m(Ω). For this it is enough to prove that for any

f ∈ Cl,m(Ω), ε > 0 and n ∈ N there is a vk,κ ∈ G such that pl,mKn
(f − vk,κ) < ε (with an obvious

change for either l or m being ∞).
Let F ∈ Cl,m(Ω) be supported in IntKn+2 and equal to f on Kn+1; fκ := F ∗ ρκ ∈ C∞(Ω)

(for κ large enough; in fact, κ depends on n: we shall assume that 1/κ is less than the distance
between Kn and the complement of Kn+1, and the distance between Kn+1 and the complement
of Kn+2, in order to limit the convolution effects only to one layer between nested compacts Kn),
and we have by properties of mollifiers that for |α| 6 l and |β| 6 m |∂α,β(fκ − f)| 6 ε/2, for
large enough κ uniformly on Kn.

On the other hand, by the density of the sequence, we can approximate F by an uk uniformly
on Kn+1, thus choosing k. Therefore

∣∣∣∂α,β(fκ − vk,κ)(x,y)
∣∣∣ 6

∣∣∣∣
∫

Kn+1

∂α,βρκ(x− x′,y − y′)
(
F (x′,y′)− uk(x

′,y′)
)
dx′dy′

∣∣∣∣
6 C sup

Kn+1

|F − uk| ,

where C is the L1 norm of ∂α,βρκ.
Thus, for any f ∈ Cl,m(Ω), ε > 0 and n ∈ N we can find first κ ∈ N such that |∂α,β(fκ−f)| 6

ε/2 and then a k ∈ N such that C supKn+1
|F −uk| 6 ε/2, providing us with the required bound.

Q.E.D.

After fixing the notation and constructions in the proof of previous theorem, we shall only
state a number of simple results we need, referring to [13, 17.1.3–5] for proofs, which can easily
be modified to the anisotropic case.

Corollary 1.

a) For any fixed g ∈ Cl,m(Ω), the linear mapping f 7→ fg is continuous from Cl,m(Ω) to itself.
b) If ϕ1 is a Cl differentiable function from an open set Ω1 ⊆ Rd to Ω′

1 ⊆ Rd, and ϕ2 a
Cm differentiable function from an open set Ω2 ⊆ Rr to Ω′

2 ⊆ Rr,then the linear mapping
f 7→ f ◦ (ϕ1 ⊠ ϕ2), from Cl,m(Ω′

1 × Ω′
2) to Cl,m(Ω1 × Ω2) is continuous.

Having just described the properties of Cl,m(Ω), our next goal is to describe the spaces of
functions with compact support, which duals will be the spaces of anisotropic distributions (on
the flat space).

For a compact set K ⊆ Ω we can consider only those functions which are supported in K,
and define a subspace of Cl,m(Ω)

Cl,mK (Ω) :=
{
f ∈ Cl,m(Ω) : supp f ⊆ K

}
.

This subspace inherits the topology from Cl,m(Ω), which is, when considered only on the subspace,
a norm topology determined by

‖f‖l,m,K := pl,mK (f) ,

and Cl,mK (Ω) is a Banach space (it can be identified with a proper subspace of the Banach space
Cl,m(K)). However, if l = ∞ or m = ∞ (in order to keep the notation simple, we assume that
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m = ∞), then we shall not get a Banach space, but a Fréchet space. Note that, similarly as it was

in the isotropic case, an increasing sequence of seminorms that makes Cl,∞Kn
(Ω) a Fréchet space is

given by (pl,kKn
), k ∈ N0. Throughout the rest of this section, we shall consider m ∈ N0 ∪ {∞},

unless explicitly stated otherwise.
Of particular importance is the following subspace of Cl,m(Ω)

Cl,mc (Ω) :=
⋃

n∈N

Cl,mKn
(Ω) ,

consisting of all functions with compact support in Cl,m(Ω), and equipped by a stronger topology
than the one inherited from Cl,m(Ω): by the topology of strict inductive limit. More precisely, it
can easily be checked that

Cl,mKn
(Ω) →֒ Cl,mKn+1

(Ω) ,

the inclusion being continuous. Also, the topology induced on Cl,mKn
(Ω) by that of Cl,mKn+1

(Ω)

coincides with the original one, and Cl,mKn
(Ω) (as a Banach space in that topology, or a Fréchet

space for m = ∞) is a closed subspace of Cl,mKn+1
(Ω). Then we have that the inductive limit

topology on Cl,mc (Ω) induces on each Cl,mKn
(Ω) the original topology, while a subset of Cl,mc (Ω) is

bounded if and only if it is contained in one Cl,mKn
(Ω), and bounded there [9, Theorem 1.3]. This

space is also complete.

After defining the spaces of test functions, we can consider their duals, and finally define the
objects in the title of this paper:

Definition. Any continuous linear functional on Cl,mc (Ω) we call a distribution of

anisotropic order, and such functionals form a vector space D′
l,m(Ω) = (Cl,mc (Ω))′.

Similarly, any continuous linear functional on Cl,m(Ω) we call a distribution of anisotro-
pic order with compact support, and such functionals form a vector space E ′

l,m(Ω) =

(Cl,m(Ω))′.

If we define the support of a distribution from D′
l,m(Ω) in the usual way, the distributions which

have compact support can be extended to continuous functionals on Cl,m(Ω), as in the standard
case, thus justifying the name.

In the latter case we have a Fréchet topology on the base space, while in the former it is the
topology of strict inductive limit, which leads to the following characterisation of continuity: a
linear functional T on Cl,mc (Ω) is continuous (at zero) if and only if its restriction to any space

Cl,mK (Ω), where K ⊆ Ω is a compact (denoted also by K ∈ K(Ω) below), is continuous (at zero),
meaning in fact that

(∀K ∈ K(Ω))(∃C > 0)(∀ϕ ∈ Cl,mc (Ω)) suppϕ ⊆ K =⇒ |〈T, ϕ〉| 6 Cpl,mK (ϕ) .

If either l or m is infinite, we have to modify the above in the obvious way.
We can equip the duals with the weak∗ topology of the dual pair, and this will suffice for

many applications. However, in order to study further properties of these spaces, we have to
equip them with the strong topology, the topology of uniform convergence on bounded sets in
Cl,mc (Ω). Our spaces have the standard properties (like completeness) as derived in [35], having
in mind that, except in the case when l = m = ∞, the bounded sets are not necessarily relatively
compact in Cl,mc (Ω), so the spaces are neither Montel nor reflexive.

Clearly, for l > k and m > n we have continuous and dense embedding Cl,m(Ω) →֒ Ck,n(Ω),

as well as Cl,mc (Ω) →֒ Ck,nc (Ω). In particular, we have that C∞
c (Ω) →֒ Cl,mc (Ω) is a continuous and

dense imbedding, as well as that Cl,m(Ω) →֒ C(Ω), and Cl,mc (Ω) →֒ Cc(Ω) (Cc(Ω) being the space
of continuous functions with compact support, having as a dual the space of Radon measures,
i.e. the distributions of order zero).
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On the other hand, by using the Lebesgue measure on Ω, we can identify locally summable
functions f ∈ L1

loc(Ω) (which subsumes Cc(Ω)) with some distributions of order zero by the usual
formula

(3) ϕ 7→

∫

Ω
f(x)ϕ(x) dx .

In this way we get continuous and dense embeddings C∞
c (Ω) →֒ Cl,mc (Ω) →֒ D′(Ω), thus Cl,mc (Ω) is

a normal space of distributions, hence its dual D′
l,m(Ω) forms a subspace of D′(Ω), when equipped

with strong topology.

Distributions of anisotropic order on manifolds

On the flat space we have defined distributions as continuous linear functionals on the space of
test functions, and then identified each function as a (regular) distribution by formula (3), where
the integration was with respect to the Lebesgue measure on Ω. Unfortunately, this cannot be
done on an arbitrary manifold (cf. [20, Sect. 3.1.1] for a nice explanation). Functions cannot
be identified as regular distributions, as there is no standard measure or an a priori notion of
integration on a general manifold. We have to change the space of test functions, or the space of
regular distributions, or both. Following [13] we shall keep the notion of test functions, and the
distributions as elements of its dual, but for regular distributions we shall use smooth densities.

In this paper by a differential manifold we always consider a locally Euclidean (of the fixed
dimension, i.e. pure) second countable Hausdorff topological space on which an equivalence class of
C∞ smooth atlases is given. In particular, our definition implies that every differentiable manifold
X is paracompact, hemicompact (i.e. admits a compact exhaustion), separable, metrisable, and
for any open cover of X there exists a smooth partition of unity subordinate to this cover [13,
16.1–4].

The above constructions of anisotropic function spaces on Rd ×Rr can easily be transferred
to manifolds. Indeed, let X and Y be differentiable manifolds of dimensions d and r. Then X×Y
is also a smooth manifold of dimension d+ r [13, Section 16.6], and if (U,ϕ) and (V, ψ) are charts
of X and Y , respectively, then (U × V, ϕ ⊠ ψ) is a chart of X × Y . Let Ω ⊆ X × Y be an open
subset. For l,m ∈ N0 ∪ {∞}, by Cl,m(Ω) we denote the space of continuous functions f : Ω → C

such that for any chart (U × V, ϕ⊠ ψ) of X × Y the mapping f |U×V ◦ (ϕ−1 ⊠ ψ−1) is contained
in Cl,m(ϕ(U) × ψ(V )) [13, 16.3]. Now we introduce a locally convex topology on Cl,m(Ω) in the
same manner as it was done in [13, 17.2] for more general C∞-sections, here with a simplification
in the notation, as we consider only the trivial complex line bundle (X×Y )×C in the codomain
of sections.

Let (Ui×Vj , ϕi⊠ψj) be at most countable family of charts on X×Y such that (Ui×Vj) form
a locally finite open cover of Ω. For further reference, we shall denote these sets of indices by I
and J (so i ∈ I, and j ∈ J ), and their Cartesian product by H (thus (i, j) ∈ H). Furthermore,
the families of all their finite subsets we shall denote by Ifin, J fin and Hfin, respectively.

For any i ∈ I and j ∈ J let us by Ki,j
n denote a sequence of compacts in ϕi(Ui) × ψj(Vj)

such that ϕi(Ui) × ψj(Vj) =
⋃
n∈NKi,j

n and Ki,j
n ⊆ IntKi,j

n+1. Then (pl,m
Ki,j

n

), given by (1), is an

increasing sequence of seminorms on Cl,m(ϕi(Ui) × ψj(Vj)) (here we limit ourselves to the case
when l,m 6= ∞). Further on, for f ∈ Cl,m(Ω) we define

(4) pl,m;i,j
n (f) := pl,m

Ki,j
n

(
f |Ui×Vj ◦ (ϕ

−1
i ⊠ ψ−1

j )
)
.

If l = ∞ or m = ∞, one proceeds as in the Euclidean setting. It is clear that each element
of a countable family (pl,m;i,j

n )i,j,n is a seminorm, while the family is total (it separates points).
Thus, this family of seminorms defines a locally convex Hausdorff topology on Cl,m(Ω). By the
definition, a sequence of functions (fk) converges to 0 in Cl,m(Ω) if and only if for each i, j the
sequence of restrictions (fk|Ui×Vj ) converges to 0 in Cl,m(Ui × Vj), which is isomorphic to the

Fréchet space Cl,m(ϕi(Ui)× ψj(Vj)), consisting of functions defined on the flat space.

Nenad Antonić & Marko Erceg & Marin Mǐsur 7
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It can easily be seen that the introduced topology does not depend on the choice of a countable
locally finite family of charts (Ui × Vj , ϕi ⊠ ψj) and a sequence of compacts Ki,j

n . Indeed, the
following lemma holds.

Lemma 1. A sequence of functions (fk) converges to 0 in Cl,m(Ω) if and only if for any chart
(U × V, ϕ ⊠ ψ) intersecting Ω, any compact K ⊆ ϕ(U) × ψ(V ), and multiindices α ∈ Nd

0 and

β ∈ Nr
0, such that |α| 6 l, |β| 6 m, the sequence

(
∂α,β

(
fk◦(ϕ

−1⊠ψ−1)
)
|K
)
converges uniformly

to 0.

Dem. By taking ϕi, ψj and Ki,j
n , for ϕ, ψ and K, respectively, we trivially establish the proof

of the reverse implication of the lemma, while the proof of the direct implication is completely
analogous to the isotropic case (see [13, 17.2]). Indeed, the local finitness of (Ui × Vj , ϕi ⊠ ψj)
implies that only finitely many charts intersect (ϕ−1 ⊠ ψ−1)(K), and for each such chart by
writing fk ◦ (ϕ

−1 ⊠ ψ−1) = fk ◦ (ϕ
−1
i ⊠ ψ−1

j ) ◦ (ϕi ◦ ϕ
−1 ⊠ ψj ◦ ψ

−1) we conclude, after applying

the smoothness of transition maps ϕi ◦ ϕ
−1 and ψj ◦ ψ

−1, and Corollary 1(b).
Q.E.D.

Since the topology is independent of the choice of charts and compacts, for Ω = Ω1 × Ω2,
where Ω1 ⊆ Rd and Ω2 ⊆ Rr are open sets, we can take a single chart (Ω, id) to define seminorms,
where id here denotes the identity map. Thus, definitions given in this and the preceding section
coincide for Ω = Ω1×Ω2. The same could be concluded even when Ω is not a Cartesian product,
but then (Ω, id) is not an eligible chart as we need to avoid mixing of first d and last r variables,
so one might have to work with possibly countably many charts in (4).

Now we can generalise Theorem 1 to differentiable manifolds, in the same vein as it was done
in [13, 17.2.2] for the isotropic case.

Theorem 2. Let X, Y , Ω, and pl,m;i,j
n be as above. For l,m ∈ N0 ∪ {∞} the spaces Cl,m(Ω)

are separable Fréchet spaces. More precisely, there exists a sequence of functions in C∞(Ω), with
compact supports contained in Ω, which is dense in each of the spaces Cl,m(Ω).

Dem. The proof follows the same steps as in [13, 17.2.2], but for the clarity of exposition, we
shall try to concisely sketch the main ideas.

Let (fk) be a Cauchy sequence in Cl,m(Ω). Then for any (i, j) the sequence (fk|Ui×Vj ) is

also a Cauchy sequence in Cl,m(Ui × Vj), which is isomorphic to Cl,m(ϕi(Ui) × ψ(Vj)). Thus,
applying Theorem 1, for any i, j we get f i,j ∈ Cl,m(Ui×Vj), being limits of the above sequence of
restrictions. On the intersections of charts, f i,j coincide. Indeed, let x ∈ (Ui×Vj)∩(Ui′×Vj′) 6= ∅,
then

|f i,j(x)− f i
′,j′(x)| 6 pl,m;i,j

n (f i,j − fk) + pl,m;i′j′

n (f i
′,j′ − fk) ,

and similarly if l = ∞ or m = ∞. Since the right hand side is arbitrarily small (for k large
enough), we have the claim. Thus, the family of functions f i,j defines f ∈ Cl,m(Ω), which is the
limit of (fk).

By Theorem 1 for each i, j there exists a sequence of smooth functions (f i,jk ), with supp f i,jk ⊆
Ui × Vj , which is dense in Cl,m(Ui × Vj). In order to have a good behaviour on the intersections

of charts, we consider the set of all finite linear combinations of (χi ⊠ θj)f
i,j
k , where χi ⊠ θj is a

partition of unity on X×Y subordinate to (Ui×Vj , ϕi⊠ψj). This set is dense in Cl,m(Ω) by virtue
of Corollary 1(a). Indeed, for any compactK ⊆ Ω and f ∈ Cl,m(Ω), f |K = (

∑
(i,j)∈H(χi⊠θj)f)|K ,

where H ∈ Hfin, so we are left with approximating each (of finitely many) (χi ⊠ θj)f , which is
obviously possible in the above set.

Q.E.D.

Having that Cl,m(Ω) is a Fréchet space, the same construction of the strict inductive limit
presented in the previous subsection applies here as well. Thus, for a compact K ⊆ Ω,

Cl,mK (Ω) :=
{
f ∈ Cl,m(Ω) : supp f ⊆ K

}
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is a closed subspace of Cl,m(Ω), hence a Fréchet space. Since K intersects only finitely many

chart domains, the topology on Cl,mK (Ω) can be descried by the following increasing sequence of
norms

max
(i,j)∈H

pl
′,m′;i,j
n ,

where H ∈ Hfin is the finite set of indices (i, j) for which the intersection of K and Ui × Vj (a

chart domain) is non-empty, n ∈ N is large enough such that K ⊆
⋃

(i,j)∈H(ϕ
−1
i ⊠ ψ−1

j )(Ki,j
n ),

where compacts Ki,j
n are defined in (4), and l′,m′ ∈ N0 are less (or equal) than l,m respectively.

If l,m 6= ∞, then it is sufficient to consider only one norm for l′ = l and m′ = m, implying that
Cl,mK (Ω) is a Banach space.

For the construction of the topology of strict inductive limit on Cl,mc (Ω) (the space of all
functions with compact support in Cl,m(Ω)) we take a compact exhaustion, i.e. a sequence of
compact sets Ks in Ω, such that Ω =

⋃
s∈NKs and Ks ⊆ IntKs+1 for any s ∈ N. Since

Cl,mc (Ω) =
⋃

s∈N

Cl,mKs

and, for any s ∈ N, Cl,mKs
is a closed subspace of Cl,mKs+1

, the strict inductive limit topology on

Cl,mc (Ω) determined by the sequence of spaces Cl,mKs
exists, so we equip Cl,mc (Ω) with this topology.

The space Cl,mc (Ω) is then a complete locally convex Hausdorff topological vector space, while

fk → f in Cl,mc (Ω) if and only if there exists s ∈ N such that the supports of all fn are contained

in Ks and fk → f in Cl,mKs
(Ω). Moreover, the strict inductive limit topology on Cl,mc (Ω) induces

on each Cl,mKs
the original Fréchet topology [28, Chapter 12.1].

For dual spaces we use the same notation as in the flat space. Thus, the dual of Cl,mc (Ω),

i.e. the space of continuous linear functionals on Cl,mc (Ω) with respect to the topology of strict

inductive limit, is denoted by D′
l,m(Ω) = (Cl,mc (Ω))′, while of Cl,m(Ω) (with respect to the Fréchet

topology) by E ′
l,m(Ω) = (Cl,m(Ω))′. Elements of D′

l,m(Ω) we call distributions of anisotropic order.

Since C∞
c (Ω) →֒ Cl,mc (Ω), any distribution of anisotropic order is a distribution, i.e. an element

of the space D′(Ω) := (C∞
c (Ω))′, and analogously E ′

l,m(Ω) ⊆ E ′(Ω) := (C∞(Ω))′. In particular,

any element of E ′
l,m(Ω) has a compact support (where the support of a distribution is defined

in the usual way using the local nature of distributions provided by Theorem 3 below), while it
can easily be shown that the reverse implication also holds in the sense that any distribution of
anisotropic order with compact support can be extended in the unique way (the uniqueness is
due to Theorem 2) to a continuous functional on Cl,m(Ω), thus elements of E ′

l,m(Ω) are called
distributions of anisotropic order with compact support.

By definition of the strict inductive limit topology, it is immediate that u ∈ D′
l,m(Ω) if and

only if for any s ∈ N the restriction of u to Cl,mKs
(Ω) is continuous, and as (Ks) is a compact

exhaustion we can generalise this statement by replacing (Ks) by the family of all compact sets in

Ω. Therefore, by the above discussed properties of spaces Cl,mK (Ω) we have the following corollary
(v. [13, 17.3] for the isotropic case, but for general currents).

Corollary 2. Let X, Y , Ω, and pl,m;i,j
n be as above (for l,m ∈ N0∪{∞}). For a linear functional

u on Cl,mc (Ω), the following statements are equivalent
a) u ∈ D′

l,m(Ω);

b) For every sequence (ϕk) converging to zero in Cl,mc (Ω) the scalar sequence (〈u, ϕk〉) converges
to zero;

c) (∀K ∈ K(Ω))(∃C > 0)(∃n ∈ N0)(∃H ∈ Hfin)(∃ l′ ∈ 0..l)(∃m′ ∈ 0..m)(∀Ψ ∈ Cl,mK (Ω))

(5) |〈u,Ψ〉| 6 C max
(i,j)∈H

pl
′,m′;i,j
n (Ψ) ,

where for brevity by 0..l we denote the set {l′ ∈ N0 : l′ 6 l} (and similarly we shall do for
1..l).
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If in (5) l′,m′ ∈ N0 are independent of K, we say that u is of (anisotropic) order (in fact,
of order at most) (l′,m′). We extend this definition allowing for the value ∞ in the case when
such l′ or m′ (or both) does not exist. Thus, u ∈ D′

l,m(Ω) is of order at most (l,m). Anisotropic
distributions of order (l,m) correspond to distributions of order (at most) l +m, hence orders
(l,∞), (∞,m), (∞,∞) (for l,m ∈ N0) provide the infinite order in the setting of (classical
isotropic) distributions.

Using this notion of order of anisotropic distributions, one could equivalently define the
space D′

l,m(Ω) as the space of all (classical) distributions which are of order (l,m). Indeed, such

objects can then be uniquely extended to continuous linear functionals on Cl,mc (Ω) by Theorem
2. However, the possible extension of the results to manifolds which are not (C∞) smooth have
determined our choice above (cf. Remark 1 below).

On each chart domain we can transfer a distribution to the flat space. Indeed, let u ∈ D′
l,m(Ω).

Then for any i, j the restriction ui,j := u|Ui×Vj given by

〈ui,j ,Ψ〉 = 〈u,Ψ〉 , Ψ ∈ Cl,mc (Ui × Vj) ,

is a continuous linear functional on Cl,mc (Ui×Vj), i.e. ui,j ∈ D′
l,m(Ui×Vj). Thus, the pushforward

ũi,j := (ϕi ⊠ ψj)∗ui,j defined by

〈ũi,j ,Ψ〉 = 〈u,Ψ ◦ (ϕi ⊠ ψj)〉 , Ψ ∈ Cl,mc

(
ϕi(Ui)× ψj(Vj)

)
,

belongs trivially to the space D′
l,m(ϕi(Ui)× ψj(Vj)).

Conversely, if we are given a family of distributions ui,j on chart domains, or equivalently a
family of distributions ũi,j on the flat space, the question is whether they define a distribution on
Ω. The answer to this question is given by the well-known localisation/unification principle [35,
Ch. I, Théorème IV (Principe du recollement des morceaux)] (for the manifolds see [13, 17.4.2]).
The proof relies on the existence of a partition of unity and a consequence of Corollary 1(a) that

for any u ∈ D′
l,m(Ω) and Ψ ∈ Cl,m(Ω) the product Ψu : Cl,mc (Ω) → R given by

〈Ψu,Φ〉 = 〈u,ΨΦ〉 , Φ ∈ Cl,mc (Ω) ,

belongs to the space D′
l,m(Ω).

As the proof follows the same pattern as in the classical isotropic case, we present only the
precise statement of this result.

Theorem 3. Let X and Y be differential manifolds, and let (Ωα, α ∈ A) be a family of open
sets, such that

⋃
Ωα = Ω ⊆ X × Y . Further, let Tα ∈ D′

l,m(Ωα) for each α, in such a way that
for Ωα ∩ Ωβ 6= ∅, distributions Tα and Tβ coincide on this intersection.

Then there is a unique distribution T ∈ D′
l,m(Ω) which, for any α ∈ A, coincides with Tα on

Ωα.

Let us close this subsection with some comments on the identification of functions with
distributions. In the case when X × Y is an oriented manifold, or equivalently, if both X and
Y are oriented manifolds, we have a canonical way how to integrate differential n-forms (cf. [13,
16.24]). Furthermore, by fixing a non-vanishing differential n-form v0 belonging to the orientation

of X × Y , for any locally integrable function f on Ω ⊆ X × Y we define the mapping on Cl,mc (Ω)
by

ϕ 7→

∫

Ω
fϕv0 ,

which is clearly a distribution of anisotropic order. This provides an embedding L1
loc(Ω) →֒

D′
l,m(Ω), which was previously commented on the flat space.

However, if X × Y is not an oriented manifold, we cannot integrate differential n-forms, but
only the densities, which are sections of the volume bundle. Thus, we cannot identify functions
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with distributions, but only with locally integrable densities, hence regular distributions are
densities (and not functions). A nice exposition of the theory of distributions in this general
setting can be found in [20, Chapter 3]. Let us just remark that our notion of (anisotropic)
distributions corresponds to distributional densities (or more generally to section distribution
densities) in [20, Definition 3.1.4].

Tensor products

For differential manifolds X and Y , it is straightforward to see that for a linear functional u
on Cl,mc (X × Y ), statement (c) of Corollary 2 implies:

(6)

(∀K ∈ K(X))(∀L ∈ K(Y ))(∃C > 0)(∃n ∈ N0)(∃ I ∈ Ifin)(∃ J ∈ J fin)

(∃ l′ ∈ 0..l)(∃m′ ∈ 0..m)(∀ϕ ∈ ClK(X))(∀ψ ∈ CmL (Y ))

|〈u, ϕ⊠ ψ〉| 6 Cmax
i∈I

pl
′;i
n (ϕ)max

j∈J
pm

′;j
n (ψ) ,

where pl
′;i
n and pm

′;j are the projections of pl
′,m′;i,j
n (given by (4)) to the first and second variable

respectively. More precisely, pl
′;i
n (f) = pl

′

π1(K
i,j
n )

(f |Ui
◦ ϕ−1

i ), where π1 : X × Y → X is the

projection to the first argument (for the definition of plK see (2)), and analogously for pm
′;i

n .
The reverse implication would have significantly greater practical use but, as we shall see at

the end of this section, it fails to hold in general.
We should first develop some properties of tensor products of test functions.

Lemma 2. Let X and Y be differential manifolds, K,K ′ ⊆ X compacts such that K ⊆
IntK ′, and similarly L,L′ ⊆ Y compacts with L ⊆ IntL′. Then any f ∈ Cl,mK×L(X × Y ) can be

approximated by a sequence of functions from C∞
K′(X)⊠C∞

L′(Y ) in the topology of C l,mK′×L′(X×Y ).

Dem. As K ′×L′ is not necessarily subordinate to only one chart, we shall use a partition of unity
on X × Y , subordinate to the product atlas (Ui × Vj , ϕi ⊠ ψj). In fact, we shall take a partition
of unity (χi) subordinate to (Ui) on X, and (θj) subordinate to (Vj) on Y . As K ′ and L′ are
compacts, they can be covered by only a finite number of Ui-s, say for i ∈ I, and Vj-s, for j ∈ J ,
respectively. Therefore we have

f =
∑

i∈I

∑

j∈J

f(χi ⊠ θj) =
∑

i∈I

∑

j∈J

fi,j .

By this we have reduced the problem to functions

fi,j = f(χi ⊠ θj) ∈ Cl,m(K∩suppχi)×(L∩supp θj)
(X × Y ) .

If we show that each of them can be approximated by a sequence of finite linear combinations of
tensor products, then the same will be valid for the finite sum of them.

Let us first notice that we can find compacts G and H such that

K ∩ suppχi ⊆ IntG ⊆ G ⊆ IntK ′ ∩ Ui

L ∩ supp θj ⊆ IntH ⊆ H ⊆ IntL′ ∩ Vj .

Now we have to reduce the argument to the one on the flat space, by using the charts. We
define

f̃i,j := fi,j ◦ (ϕ
−1
i ⊠ ψ−1

j ) ,

which is supported in the compact ϕi(K ∩ suppχi) × ψj(L ∩ supp θj) ⊆ Intϕi(G) × Intψj(H).
At this point we can apply the result for the flat space (which was essentially carried out in [13,
17.10.2]), obtaining the approximation supported in ϕi(G) × ψj(H). These approximations can
be pulled back to the manifold X × Y , as G ⊆ Ui and H ⊆ Vj , and by (4) the approximation
remains valid. Extending these functions by zero to the whole manifold we get the required
approximation for fi,j .

Q.E.D.
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The above lemma has an important consequence: a distribution u ∈ D′
l,m(X×Y ) is uniquely

determined by its values on tensor products. It allows us to define the tensor product of two
distributions, as the unique distribution given by the following theorem (cf. [13, 17.10.3]).

Theorem 4. Let X and Y be differential manifolds, u ∈ D′
l(X) and v ∈ D′

m(Y ). Then

(
∃!w ∈ D′

l,m(X × Y )
)(

∀ϕ ∈ Clc(X)
)(

∀ψ ∈ Cmc (Y )
)

〈w,ϕ⊠ ψ〉 = 〈u, ϕ〉〈v, ψ〉.

Furthermore, for any test function Φ ∈ Cl,mc (X × Y ), function VΦ : x 7→ 〈v,Φ(x, ·)〉 is in Clc(X),
while UΦ : y 7→ 〈u,Φ(·,y)〉 is in Cmc (Y ), and we have that

〈w,Φ〉 = 〈u, VΦ〉 = 〈v, UΦ〉 .

Dem. The uniqueness is clear from Lemma 2.
Let us highlight the main steps, paying the attention to the differences from the anisotropic

case.
Firstly, for Φ of the form ϕ ⊠ ψ, where ϕ ∈ Clc(X) and ψ ∈ Cmc (Y ), we get Vϕ⊠ψ(x) =

ϕ(x)〈v, ψ〉 and 〈u, Vϕ⊠ψ〉 = 〈u, ϕ〉〈v, ψ〉 =: 〈w,Φ〉. Thus, it is sufficient to prove that the linear

mapping Φ 7→ 〈u, VΦ〉 is continuous on Cl,mc (X × Y ), which is equivalent to the continuity on

Cl,mM (X × Y ) for any compact set M in X × Y . By Theorem 3 (or applying the same argument
as in the proof of the previous lemma), we can assume that M is contained in a chart of X × Y ,
hence, applying the pushforward, we are left to consider only the flat case, i.e. X and Y open
sets in Rd and Rr.

From [13, 17.10.1] it follows that for any Φ ∈ Cl,mM (X × Y ), we have VΦ ∈ Clπ1(M)(X). Let us

take a sequence (Φj) converging to zero in Cl,mM (X×Y ). Since v is a distribution, the corresponding
(Vj) converges to zero uniformly on π1(M). Noticing that ∂αx Vj(x) = 〈v, ∂αx Φj(x, ·)〉, for |α| 6 l,
we conclude that derivatives of Vj up to order l converge to zero uniformly on π1(M) as well.
From this, we get that 〈u, Vj〉 converges to zero. Thus, by Corollary 2(b) we get the claim.

Q.E.D.

The distribution w ∈ D′
l,m(X × Y ) is called the tensor product of distributions u and v, and

it is denoted by u⊠ v.
It is not difficult to check (following [13, 17.10.]) that the tensor product of anisotropic

distributions satisfies:
a) supp (u⊠ v) = suppu× supp v.
b) For each ϕ ∈ Cl(X) and ψ ∈ Cm(Y ) one has (ϕ⊠ ψ)(u⊠ v) = (ϕu)⊠ (ψv).

Let us go back to the starting question of this subsection on the validity of the converse
implication in (6), i.e. if u ∈ D′(X × Y ) satisfies (6) whether it can be uniquely extended to an
element of D′

l,m(X × Y ).
Unfortunately, this conjecture fails in general. Let us first see where the standard straight-

forward approach to the proof would fail, and after that we shall provide a counterexample which
was kindly communicated to us by Evgenij Panov. It is sufficient to consider only the simplest
case where X and Y are open subsets of Euclidean spaces.

First, one would take an arbitrary compact M ⊆ X × Y . Let L and K be its projections to
X and Y , which are compact. Then replacing them by larger compacts K ′ and L′, as it was done

in Lemma 2, one would approximate any Ψ ∈ Cl,mK×L(X × Y ) by a sequence (
∑N

k=1 ϕ
(N)
k ⊠ ψ

(N)
k )

of functions from C∞
K′(X)⊠ C∞

L′(Y ), and one would be tempted to define

〈u,Ψ〉 = lim
N

N∑

k=1

〈u, ϕ
(N)
k ⊠ ψ

(N)
k 〉 .

However, the problem with this approach is in obtaining an appropriate bound for 〈u,Ψ〉. Natu-
rally, one would like to use the already available bound for the tensor product given in (6). Since

Nenad Antonić & Marko Erceg & Marin Mǐsur 12
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the number of elements in tensor approximation can be unbounded (although, for each element
it is finite), the constant for each seminorm from the definition of anisotropic distributions would
be unbounded. Thus, this approach fails to yield the desired bound.

For the counterexample, let us assume l = m = 0 and d = r = 1. First notice that
ln|x−y| ∈ L1

loc(Rx×Ry), so it can be identified with an element of D′(R2). Consider a distribution
u = − 1

π∂yln|x− y|. For g ∈ C0,1(R×R), we get

〈u, g〉 =
1

π

∫

R2

ln|x− y|∂yg(x, y) dxdy .

It follows that u ∈ D′
0,1(R × R). Since ∂xln|x − y| = ∂yln|x − y|, we have u ∈ D′

1,0(R × R) as
well. Thus, u ∈ D′

0,1(R ×R) ∩ D′
1,0(R ×R). Of course, any such functional u can be extended

to a linear functional U on Cc(R×R) (for example, take the extension by zero to the algebraic
complement N of that subspace M := D′

0,1(R ×R) ∩ D′
1,0(R ×R), and use additivity to define

U(m+ n) := u(m)). However, there is no guarantee that such an extension will be continuous.
Take g to be of the form ϕ(x)⊠ ψ(y), for ϕ ∈ Cc(R) and ψ ∈ C1

c(R). It holds:

〈u, ϕ⊠ ψ〉 =
1

π

∫

R

ϕ(x)

∫

R

ln|x− y|ψ′(y) dydx ,

and the inner integral, after integration by parts, becomes
∫

R

ln|x− y|ψ′(y) dy = lim
ε→0

∫

|y−x|>ε
ln|y − x|ψ′(y) dy

= lim
ε→0

(
(ψ(x− ε)− ψ(x+ ε)) lnε+

∫

|y−x|>ε

ψ(y)

x− y
dy

)

= V.P.

∫

R

ψ(y)

x− y
dy = πHψ(x) ,

where Hψ denotes the Hilbert transform of function ψ ∈ C1
c(R). Since it is an isometry on L2(R)

(see [18, Chapter 5.1.1]), we have the following bound

|〈u, ϕ⊠ ψ〉| =

∣∣∣∣
∫

R

ϕ(x)Hψ(x) dx

∣∣∣∣ 6 ‖ϕ‖L2(R)‖ψ‖L2(R) 6 |K|‖ϕ‖L∞(R)‖ψ‖L∞(R) ,

for smooth functions ϕ and ψ whose both supports are contained in a compact set K ⊆ R. Thus,
all the assumptions of the conjecture are satisfied, but u /∈ D′

0,0(R×R).

To demonstrate that, assume to the contrary that u is a distribution of order 0 on R2. Take
a test-function g whose support does not intersect the diagonal of R2. After integration by parts,
we get the identity

〈u, g〉 =
1

π

∫

R2

g(x, y)

x− y
dxdy .

Now, take a compact set K = [0, 3]× [0, 3], and since u is a distribution of order 0, there exists a
constant CK > 0 such that for any test-function g whose support is in K, we get

|〈u, g〉| 6 CK‖g‖L∞(R2) .

Take a sequence of non-negative test-functions (gε), 0 < ε < 1, whose supports are contained in
the triangle with vertices (0, 0), (3, 0) and (3, 3), which are identically equal to 1 in the triangle
with vertices (1 + ε, 1), (2, 1) and (2, 2 − ε), and ‖gε‖L∞(R2) = 1. Clearly, the supports of all gε
are contained in K, and they do not intersect the diagonal of R2. Thus, we can write

〈u, gε〉 =
1

π

∫

R2

gε(x, y)

x− y
dxdy

>
1

π

∫ 2−ε

1

∫ 2

y+ε

1

x− y
dxdy

=
1

π

∫ 2−ε

1
ln(2− y) dy − (1− ε)

lnε

π
>

−1

π
− (1− ε)

lnε

π
.
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On one hand, we have the uniform bound 〈u, gε〉 = |〈u, gε〉| 6 CK , while on the other hand, the
above bound implies 〈u, gε〉 → ∞ as ε→ 0, which is a contradiction.

The lack of the above result is the main reason why we need to consider a variant of the
Schwartz kernel theorem for anisotropic distributions.

Remark 1. Many constructions and proofs of this section could be simplified by applying
existing results for the (classical) distributions. However, we hope that the readers would benefit
more from this construction of anisotropic distributions from scratch. An additional reason for
this approach is to build a theory that does not depend on the smoothness of the corresponding
manifolds. Let us elaborate more on this.

In this section we considered only C∞ smooth manifolds, denoted by differential manifolds
(see the beginning of the second subsection for the precise definition). Although any Cr smooth
manifold is Cr-diffeomorphic to a C∞ smooth manifold (differential manifold) (see [19, Chapter
2, Theorem 2.10]), often in applications it is simpler to work with an explicit Cr-structure [14, 22,
25]. Here by Cr smooth manifolds we denote a locally Euclidean (of the fixed dimension, i.e. pure)
second countable Hausdorff topological space on which an equivalence class of Cr smooth atlases
is given, i.e. the transition maps are (at least) of the class Cr [19, Chapter 1]. Thus, for r = ∞
we get differential manifolds that are studied in this paper. It is crucial to notice that if r < ∞
we cannot define classical distributions.

An important fact is that all the results developed in this section can be adjusted to such Cr

manifolds. Indeed, let X be Cl̄ smooth manifold of dimension d, and Y Cm̄ smooth manifold of
dimension r, where l̄, m̄ ∈ N∪ {∞}. Then on X × Y the highest regularity for functions that we

can obtain is (l̄, m̄), i.e. the space Cl̄,m̄(Ω), Ω ⊆ X × Y open. Now, it is an easy exercise to check
that all the results and all the proofs of this section remain valid under additional assumptions
that l 6 l̄ and m 6 m̄. In addition, the space C∞(Ω) in the statement of Theorem 2 should be

replaced by Cl̄,m̄(Ω), and similar changes should be made in Lemma 2.
In the following section we shall return to this topic and state a kernel theorem for Cr

manifolds.

3. The Schwartz kernel theorem for distributions of anisotropic order

Starting with a distributionK ∈ D′(X×Y ), it is straightforward to define strongly continuous
linear operator A : C∞

c (X) → D′(Y ) by formula

〈Aϕ,ψ〉 = 〈K,ϕ⊠ ψ〉 ,

where ϕ ∈ C∞
c (X) and ψ ∈ C∞

c (Y ) [34, p. 138]. The Schwartz kernel theorem states that the
converse is also valid: starting from a linear operator A : C∞

c (X) → D′(Y ), continuous from the
strict inductive limit topology on the domain to weak (i.e. weak ∗) topology on its range, one
can define the unique distributional kernel K such that the above formula is valid. This theorem
was used in [7] to prove the existence of H-distributions, and its form prevented any refinement
on whether H-distributions lay in a better (smaller) space than D′.

In this section we shall prove a version of the Schwartz kernel theorem for distributions of
anisotropic order. While doing that, we shall follow the proof in [13, 23.9.2] and carefully take
note of the order of distributions appearing. For other possible approaches, see the remarks after
the proof of the following theorem. However, it should be noted that, up to our knowledge, this
is the first version of the Schwartz kernel theorem for distributions of finite order.

Theorem 5. Let X and Y be differential manifolds, of dimension d and r, and l,m ∈ N0∪{∞}.
Then the following statements hold:
a) If K ∈ D′

l,m(X×Y ), then for each ϕ ∈ Clc(X) the linear form Kϕ, defined by ψ 7→ 〈K,ϕ⊠ψ〉,
is a distribution of order not more than m on Y . Furthermore, the mapping ϕ 7→ Kϕ,
taking Clc(X) with its inductive limit topology to D′

m(Y ) with weak ∗ topology, is linear and
continuous.
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b) Let A : Clc(X) → D′
m(Y ) be a continuous linear operator, in the pair of topologies as in (a)

above. Then there exists a unique distribution of anisotropic order K ∈ D′
l,r(m+2)(X × Y )

such that for any ϕ ∈ Clc(X) and ψ ∈ C
r(m+2)
c (Y )

〈K,ϕ⊠ψ〉 = 〈Kϕ, ψ〉 = 〈Aϕ,ψ〉 .

Dem. a) Since K is continuous, by Corollary 2(c) (see also (6)) for any L ∈ K(X) and H ∈ K(Y )
there exist C > 0, n ∈ N, finite set of indices I and J , and l′,m′ ∈ N0, l

′ 6 l, m′ 6 m, such that
for any ϕ ∈ ClL(X) and ψ ∈ CmH(Y ) it holds

(7) |〈Kϕ, ψ〉| = |〈K,ϕ⊠ ψ〉| 6 C̃max
i∈I

pl
′;i
n (ϕ)max

j∈J
pm

′;j
n (ψ) .

Let ϕ0 ∈ Clc(X) be an arbitrary function. Kϕ0 is linear as the tensor product is bilinear and
K is linear, while for L := suppϕ0 by the previous estimate we get

|〈Kϕ0 , ψ〉| 6 Cmax
j∈J

pm
′;j

n (ψ) , ψ ∈ CmH(Y ) ,

where C = C̃maxi∈I p
l′;i
n (ϕ0). Thus, Kϕ0 ∈ D′

m(Y ).
The mapping ϕ 7→ Kϕ is trivially linear on Clc(X). To show that it is continuous, we need to

estimate |〈Kϕ, ψ〉| by a norm defining the topology on Clc(X) for an arbitrary ψ ∈ Cmc (Y ). Let
us take an arbitrary ψ0 ∈ Cmc (Y ). For H := suppψ0 by (7) we get

|〈Kϕ, ψ0〉| 6 Cmax
i∈I

pl
′;i
n (ϕ) , ϕ ∈ ClL(X) ,

where C = C̃maxj∈J p
m′;j
n (ψ0). Therefore, the mapping ϕ 7→ Kϕ, from Clc(X) to D′

m(Y ) is linear
and continuous.

b) Let us first comment the uniqueness. By formula

〈K,ϕ⊠ψ〉 = 〈Kϕ, ψ〉 = 〈Aϕ,ψ〉 ,

a continuous functional K on Clc(X)⊠C
r(m+2)
c (Y ) is defined. As it is defined on a dense subset of

Cl,r(m+2)(X ×Y ) (see Lemma 2), such K is uniquely determined on the whole Cl,r(m+2)(X ×Y ).

The proof of existence will be divided into three steps. In the first step we assume that X
and Y are open subsets of Rd and Rr, and additionally, that the range of A is C(Y ) ⊆ D′

m(Y )
(understood as distributions which can be identified with continuous functions; note that such
an embedding exists in the flat space). This will allow us to write explicitly the action of Aϕ on
a test function ψ ∈ Cmc (Y ), which will finally enable us to define the kernel K. In the second
step we briefly comment how the case of general manifolds X and Y can be reduced to Euclidean
spaces, while in the last step the structure theorem of distributions is used to reduce the problem
to the second step. Let us begin.

Step I. X,Y open subsets of Euclidean spaces and the range of A contained in C(Y )
Assume that X and Y are open subsets of Rd and Rr, respectively, and that for any ϕ ∈ Clc(X),
Aϕ ∈ C(Y ). Its action on a test function ψ ∈ Cmc (Y ) is given by

〈Aϕ,ψ〉 =

∫

Y
(Aϕ)(y)ψ(y)dy .

The continuity assumption on A implies that A : Clc(X) −→ C(Y ) is continuous when the range
is equipped with the weak ∗ topology inherited from D′

m(Y ).
As the latter is a Hausdorff space, that operator has a closed graph, but this remains true even

when we replace the topology on C(Y ) by its standard Fréchet topology [28, Exercise 14.101(a)],
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which is stronger. Since Clc(X) is barrelled, as a strict inductive limit of barrelled spaces, we can
apply the Closed graph theorem [28, Theorem 14.3.4(b)] (the proof of this form is essentially the
same as the classical Banach’s proof) to conclude that A : Clc(X) −→ C(Y ) is continuous with
usual strong topologies on its domain and range.

For y ∈ Y consider a linear functional Fy : Clc(X) −→ C defined by

Fy(ϕ) = (Aϕ)(y) .

Since Aϕ is a continuous function, Fy is well-defined and clearly it is continuous as a composition
of continuous mappings, thus a distribution in D′

l(X).

Let us take a test function Ψ ∈ Cl,0c (X × Y ). If we fix its second variable, we can consider
it as a function from Clc(X) and apply Fy; we are interested in the properties of the following
mapping:

y 7→ Fy(Ψ(·,y)) =
(
AΨ(·,y)

)
(y) .

Clearly, it is well defined on Y , with a compact support contained in the projection π2(suppΨ).
Furthermore, we have the following bounds:

(8)

∣∣∣Fy(Ψ(·,y))
∣∣∣ =

∣∣∣
(
AΨ(·,y)

)
(y)
∣∣∣ 6 ‖AΨ(·,y)(·)‖L∞(π2(suppΨ))

6 C‖Ψ(·,y)‖Cl
π1(suppΨ)

(X) 6 C‖Ψ‖
Cl,0

suppΨ(X×Y )
.

The proof of continuity is a bit more involved; we shall show sequential continuity: take a
sequence yn → y in Y . Denote H = π1(suppΨ) and let L ⊆ Y be a compact such that yn,y ∈ L;
Ψ is uniformly continuous on compact H × L. This is also valid for ∂αx Ψ, where |α| 6 l, which
results in Ψ(·,yn) −→ Ψ(·,y) in Clc(X). As A is continuous, the convergence is carried to C(Y ),
i.e. to the uniform convergence on compacts of the sequence of functions AΨ(·,yn) to AΨ(·,y).
In particular, this gives that (AΨ(·,yn))(ȳ) − (AΨ(·,y))(ȳ) is arbitrary small independently of
ȳ ∈ L, for large enough n.

On the other hand, AΨ(·,y) is uniformly continuous, thus (AΨ(·,y))(yn)− (AΨ(·,y))(y) is
small for large n. In other terms, we have the required convergence

Fyn(Ψ(·,yn)) −→ Fy(Ψ(·,y)) .

Any continuous function with compact support is summable, so we can define functional K
on Cl,0c (X × Y ):

〈K,Ψ〉 =

∫

Y
Fy(Ψ(·,y)) dy ,

which is obviously linear in Ψ, as Fy is.

For any H ∈ K(X × Y ) let us take Ψ ∈ Cl,0H (X × Y ). By (8) and the fact that the support
of y 7→ Fy(Ψ(·,y)) is contained in the projection π2(H) we get

|〈K,Ψ〉| 6

∫

π2(H)
|Fy(Ψ(·,y))| dy 6 vol

(
π2(H)

)
C‖Ψ‖

Cl,0
H

(X×Y )
,

thus, by Corollary 2(c), K ∈ D′
l,0(X × Y ).

Finally, it is easy to check that for ϕ ∈ Clc(X) and ψ ∈ Cc(Y ), we have:

〈K,ϕ⊠ ψ〉 =

∫

Y
Fy(ϕ⊠ ψ(y))dy =

∫

Y
Fy(ϕ)ψ(y)dy =

∫

Y
(Aϕ)(y)ψ(y)dy = 〈Aϕ,ψ〉 .

Step II. General X,Y – reduction to Euclidean spaces
Let (Ũα) and (Ṽβ) be covers of X and Y consisting of relatively compact open sets and such

that each Ũα × Ṽβ is contained in a single chart domain Ui × Vj , where (Ui × Vj , ϕi ⊠ ψj) is at
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most countable family of charts on X × Y such that (Ui × Vj) form a locally finite open cover of

X × Y . It is sufficient to show for any α, β the existence of Kαβ ∈ D′
l,r(m+2)(Ũα × Ṽβ) such that

for any ϕ ∈ Clc(Ũα) and ψ ∈ C
r(m+2)
c (Ṽβ) it holds 〈Kαβ , ϕ ⊠ ψ〉 = 〈Aϕ,ψ〉. Indeed, by Lemma

2 each Kαβ is unique, thus for any α, β, γ, δ distributions Kαβ and Kγδ coincide on open sets

(Ũα ∩ Ũγ) × (Ṽβ ∩ Ṽδ) of X × Y . Therefore, the existence of K ∈ D′
l,r(m+2)(X × Y ) follows by

Theorem 3.
Moreover, as each set Ũα × Ṽβ is contained in a single chart domain, we can transfer for any

α, β the objects to the flat space (see the discussion before Theorem 3). Thus, without loss of
generality, in the rest of the proof (i.e. in Step III) we assume that X = Rd and Y = Rr, and
we need to prove for arbitrary open and bounded subsets U ⊆ Rd, V ⊆ Rr the existence of

K ∈ D′
l,r(m+2)(U × V ) such that for any ϕ ∈ Clc(U) and ψ ∈ C

r(m+2)
c (V ) it holds 〈Kαβ , ϕ⊠ ψ〉 =

〈Aϕ,ψ〉.

Step III. General A
For X = Rd and Y = Rr, let us choose arbitrary open and bounded subsets U ⊆ Rd and V ⊆ Rr.
By Step II it is sufficient to show the existence of K ∈ D′

l,r(m+2)(U × V ) such that

〈K,ϕ⊠ ψ〉 = 〈Aϕ,ψ〉 , ϕ ∈ Clc(U) , ψ ∈ Cr(m+2)(V ) .

Let us take a relatively compact open neighbourhood W of the closure of V in Y and pick a
smooth cut-off function ρ which is equal to one on the closure of V and whose support is contained
in W . By Ã : Clc(U) → D′

m(W ) we denote the restriction of A defined by

〈Ãϕ, ψ〉 = 〈Aϕ,ψ〉 , ϕ ∈ Clc(U) , ψ ∈ Cmc (W ) .

It is clear that Ã is well-defined and continuous (in the same sense as A).
Multiplying a distribution of finite order with ρ does not change its order. Thus, for ϕ ∈

Clc(U), ρÃϕ is an element of the space D′
m(W ) and has a compact support. The next step is to

use the so-called structure theorem for distributions: from the proof of Theorem 5.4.1 of [15], it
follows that we can write

ρÃϕ =
(
∂m+2
1 . . . ∂m+2

r

) (
Em+2 ∗ (ρÃϕ)

)
,

where Em+2 is the fundamental solution of the differential operator ∂m+2
1 . . . ∂m+2

r (we take partial
derivatives with respect to the y variable), i.e. it satisfies in the sense of distributions the following
equation

(
∂m+2
1 . . . ∂m+2

r

)
Em+2 = δ0, where δ0 is the Dirac measure concentrated at the origin.

For the explicit formula of Em+2, see [15, Chapter 5.4]. Furthermore, in the proof of [15, Theorem

5.4.1], it was shown that Em+2 ∗ (ρÃϕ) is a continuous function. Denoting by Ẽm+2∗ transpose
of the operator Em+2∗, we write for ϕ ∈ Clc(U) and ψ ∈ Cmc (W )

〈
Em+2 ∗ (ρÃϕ), ψ

〉
=
〈
Ãϕ, ρẼm+2 ∗ ψ

〉
,

from which we conclude that the mapping ϕ 7→ Em+2∗(ρÃϕ) is continuous from Clc(U) to D′
m(W ).

Now we can apply Step I for X = U , Y = W and A = Em+2 ∗ (ρÃ · ). Thus, there exists a
distribution R ∈ D′

l,0(U ×W ) such that for all ϕ ∈ Clc(U) and ψ ∈ Cc(W ) it holds

〈
Em+2 ∗ (ρÃϕ), ψ

〉
= 〈R,ϕ⊠ ψ〉 .

Let us define a distribution K on U × V by K := (∂m+2
1 . . . ∂m+2

r )R, where the derivatives
are taken with respect to the variable y. Since the order of R is (l, 0), K is a distribution of
anisotropic order (l, r(m+ 2)) on U × V .
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Distributions of anisotropic order and applications

Taking ϕ ∈ Clc(U) and ψ ∈ C
r(m+2)
c (V ), we have

〈K,ϕ⊠ ψ〉 = (−1)r(m+2)
〈
R,ϕ⊠

(
∂m+2
1 . . . ∂m+2

r

)
ψ
〉

= (−1)r(m+2)
〈
Em+2 ∗ (ρÃϕ),

(
∂m+2
1 . . . ∂m+2

r

)
ψ
〉

=
〈(
∂m+2
1 . . . ∂m+2

r

) (
Em+2 ∗ (ρÃϕ)

)
, ψ
〉

=
〈
ρÃϕ, ψ

〉

=
〈
Ãϕ, ρψ

〉

= 〈Aϕ,ψ〉 .

Therefore, K is the desired kernel distribution.
Q.E.D.

Remark 2.

a) Note that in part (b) of the theorem, we did not get that K ∈ D′
l,m(X × Y ), as one would

wish to get while observing the statement in part (a): the order with respect to x variable
remained the same, but the order with respect to the y variable increased from m to r(m+2).
However, this was expected by the example given in the previous section.

b) Under assumptions of Theorem 5(b) we have that the mapping ψ 7→ 〈A·, ψ〉 is continuous
from Cmc (Y ) to D′

l(X) in the analogous pair of topologies as was the case with A. Thus, we

can interchange the role of X and Y to get K̃ ∈ D′
d(l+2),m(X × Y ), where the order with

respect to y remained the same, while the order with respect to x variable increased from l
to d(l+2). Since the uniqueness of the kernel has already been determined, we conclude that
the unique kernel K belongs to the space D′

l,r(m+2)(X × Y ) ∩D′
d(l+2),m(X × Y ). It might be

interesting to see some additional properties of that intersection.
c) Note that the order up to which we got the increase is determined by the structure theorem

for distributions we used in the proof, and it represents an improvement of the previous
results as anisotropic orders are allowed.
Of course, at this level of generality it cannot be expected to get an optimal order of the kernel
distribution in part (b) of the previous theorem. Indeed, starting with K ∈ D′

l,m(X × Y ) by

Theorem 5(a) Kϕ (in the notation of the theorem) is continuous from Clc(X) to D′
m(Y ), and

applying Theorem 5(b) we get that the kernel (which coincides with the starting distribution
K) belongs to D′

l,r(m+2)(X × Y ), which is obviously not optimal. Even if we consider only

situations in which it is known that for continuous A : Clc(X) → D′
m(Y ) the order of the

kernel distribution is not (l,m), i.e. that some increase in order is necessary, our result is still
not optimal. This could be seen on the example from the previous section as by our result
u ∈ D′

0,2(R × R) ∩ D′
2,0(R × R), while it has been shown that the order of u is (0,1) and

(1,0). However, our result has a nice feature that preserves the order in one variable.

Remark 3. If one used a more constructive proof of the Schwartz kernel theorem, for example
[36, Theorem 1.3.4], one would end up increasing the order with respect to both variables x and
y. In this case, increasing the order with respect to both variables occurs naturally because one
needs to secure the integrability of the function which is used to define the kernel function.

Let us remark in passing that another interesting approach to the kernel theorem is given in
[39, Chapter 51]. This approach is based on deep results of functional analysis on tensor products
of nuclear spaces of Alexander Grothendieck. However, such programme would require more
elaborate investigation.

Our Theorem 5 is not particularly suitable for the purposes of article [26]. Namely, in that
case we have a linear operator whose domain is C∞

c and range D′
m. Theorem 5 would increase

the order with respect to the y variable. Luckily, a special case of Grothendieck’s result has been
available in the work of Bogdanowicz [10], who gave simpler proofs in the case of Fréchet and
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(LF)-spaces. By casting these results to the case of Cl function spaces, an appropriate version
of the kernel theorem was obtained. An important detail is to notice that in order to use these
results, we had to have a nuclear space, which is the case with C∞

c .

The proof of the previous theorem applies in the case of Cr smooth manifolds as well (see
Remark 1). One just needs to be careful that the smoothness of underlying functions does not
exceed the smoothness of the manifold. Thus, for the convenience of the reader, let us restate
the kernel theorem also in this generalised form.

Theorem 6. Let X be Cl̄ smooth manifold of dimension d, and Y Cm̄ smooth manifold of
dimension r, where l̄, m̄ ∈ N ∪ {∞}. Let l,m ∈ N0 ∪ {∞} satisfy l 6 l̄ and m 6 m̄. Then the
following statements hold:
a) If K ∈ D′

l,m(X×Y ), then for each ϕ ∈ Clc(X) the linear form Kϕ, defined by ψ 7→ 〈K,ϕ⊠ψ〉,
is a distribution of order not more than m on Y . Furthermore, the mapping ϕ 7→ Kϕ,
taking Clc(X) with its inductive limit topology to D′

m(Y ) with weak ∗ topology, is linear and
continuous.

b) Let A : Clc(X) → D′
m(Y ) be a continuous linear operator, in the pair of topologies as in

(a) above, and let in addition r(m + 2) 6 m̄. Then there exists a unique distribution of

anisotropic order K ∈ D′
l,r(m+2)(X × Y ) such that for any ϕ ∈ Clc(X) and ψ ∈ C

r(m+2)
c (Y )

〈K,ϕ⊠ψ〉 = 〈Kϕ, ψ〉 = 〈Aϕ,ψ〉 .

Let us conclude this section with a simple example (compare with [21, Chapter V]).
Let X ⊆ Rd, Y ⊆ Rr, f ∈ C(Y ;X), and A : Clc(X) → C(Y ) →֒ D′

0(Y ) defined by Aϕ = ϕ◦f .
Its kernel K has support contained in the graph of f and is given by

〈K,Φ〉 =

∫

Y
Φ(f(y),y) dy , Φ ∈ Cl,2rc (X × Y ) .

In particular, for r = d, Y = X and f identity map, we get that the support of K is contained in
the diagonal {(x,x) : x ∈ X} ⊆ X ×X, and

〈K,Φ〉 =

∫

X
Φ(x,x) dx , Φ ∈ Cl,2dc (X ×X) .

4. H-distributions

Existence

An important result that was used in the proof of existence of H-measures was the First
commutation lemma [38], which stated that the commutator of multiplication and the Fourier
multiplier operator was compact on L2(Rd). We shall need a variant of this result for the Lp(Rd)
spaces, which was shown in [6]. It is a consequence of the following Krasnosel’skij type lemma
(for details and proofs, see [6]):

Lemma 3. Assume that linear operator A is compact on L2(Rd) and bounded on Lr(Rd), for
some r ∈ 〈1,∞〉 \ {2}. Then A is also compact on Lp(Rd), for any p between 2 and r (i.e. such
that 1/p = θ/2 + (1− θ)/r, for some θ ∈ 〈0, 1〉).

With this result in hand, one just needs to use Tartar’s First commutation lemma on L2(Rd)
for compactness [38, Lemma 1.7], and the Hörmander-Mihlin theorem [18, Theorem 5.2.7; 4] for
boundedness of Fourier multipliers on Lp(Rd), for any p ∈ 〈1,∞〉, to conclude the following (recall
that we took κ := ⌊d/2⌋+ 1):
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Corollary 3. If b ∈ C0(R
d) and ψ ∈ Cκ(Sd−1), then the commutator Aψb− bAψ is compact on

Lp(Rd), for any p ∈ 〈1,∞〉.

We are now ready to reprove the theorem on existence of H-distributions [7], in addition
showing that they are actually distributions of order 0 (Radon measures) in x, and of finite order
Q := (d − 1)(κ + 2) in ξ, where κ := ⌊d/2⌋ + 1, as required by the Hörmander-Mihlin theorem.
Of course, we take d > 2, in order to exclude the trivial case.

Theorem 7. If un −⇀ 0 in Lploc(R
d) and vn

∗
−⇀ v in Lqloc(R

d) for some p ∈ 〈1,∞〉 and
q > p′, then there exist subsequences (un′), (vn′) and a complex valued anisotropic distribution
µ ∈ D′

0,Q(R
d × Sd−1), such that, for any ϕ1, ϕ2 ∈ Cc(R

d) and ψ ∈ CQ(Sd−1), one has:

lim
n′→∞

∫

Rd

Aψ(ϕ1un′)(x)(ϕ2vn′)(x)dx = lim
n′→∞

∫

Rd

(ϕ1un′)(x)Aψ(ϕ2vn′)(x)dx

= 〈µ, ϕ1ϕ2 ⊠ ψ〉,

where Aψ : Lp(Rd) −→ Lp(Rd) is the Fourier multiplier operator with symbol ψ ∈ CQ(Sd−1).

Remark 4.

a) Of course, for q ∈ 〈1,∞〉, weak and weak-∗ convergence above coincide since Lqloc(R
d) is

reflexive.
b) The Theorem only gives us an upper bound for the order in ξ. To illustrate that, consider

the case p = q = 2, the H-distribution is actually an H-measure, which is of order 0 in ξ.
However, in general we cannot expect to get a distribution of order 0 in ξ, as it will be
illustrated in the next section.

Dem. (of Theorem 7) The first equality above is clear, as the adjoint of Aψ is Aψ. Without loss

of generality, we may assume that p 6 2 (if p > 2, we would use the first equality in the statement
of the theorem and proceed as in the case p 6 2).

The rest of the proof follows along the same lines as in [7], after noting that

lim
n Lp′

〈
Aψ(ϕ2v), ϕ1un

〉
Lp

= 0 .

Indeed, as q > p′, we have that ϕ2v ∈ Lp
′

(Rd), thus Aψ(ϕ2v) ∈ Lp
′

(Rd) as well, and we can pass
to the limit in the product.

Take ϑl and Kl as in the definition of metric dp on Lploc(R
d) in the Introduction; therefore

suppϕ2 ⊆ Kl ⊆ suppϑl for some l ∈ N, and we have:

(9)

lim
n Lp′

〈
Aψ(ϕ2vn), ϕ1un

〉
Lp

= lim
n Lp′

〈
Aψ

(
ϕ2ϑl(vn − v)

)
, ϕ1un

〉
Lp

= lim
n Lp′

〈
Aψ(ϑl(vn − v)), ϕ1ϕ2ϑlun

〉
Lp

= lim
n Lp′

〈
Aψ(ϑlvn), ϕ1ϕ2ϑlun

〉
Lp

=: lim
n
µn,l(ϕ1ϕ2, ψ) .

In the second equality we have used Corollary 3 (a version of the First commutation lemma for
Lp(Rd) spaces). The final expression shows that each integral is indeed a bilinear functional
depending on ϕ = ϕ1ϕ2 and ψ.

Furthermore, by the Hölder inequality and continuity of the Fourier multiplier operator, we
have

|µn,l(ϕ, ψ)| 6 ‖ϕϑlun‖Lp‖Aψ(ϑlvn)‖Lp′ 6 C̃‖ψ‖Cκ(Sd−1)‖ϕ‖CKl
(Rd) ,

where the constant C̃ is given by C̃ = C|un|ϑl,p|vn|ϑl,p′ , C depending only on d and p, as a
consequence of the continuity of Fourier multiplier Aψ.

For l ∈ N, we can bound |un|ϑl,p and |vn|ϑl,p′ by constants independent of n and apply [7,
Lemma 3.2], obtaining operators Dl ∈ L(CKl

(Rd); (Cκ(Sd−1))′), defined by

(10) 〈Dlϕ, ψ〉 := lim
n′

µn′,l(ϕ, ψ) ,
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such that Dl is an extension of Dl−1.

This allows us to define an operator D : Cc(R
d) −→

(
Cκ(Sd−1)

)′
; namely, for ϕ ∈ Cc(R

d)

we take l ∈ N such that suppϕ ⊆ Kl, and set Dϕ := Dlϕ, which satisfies:

‖Dϕ‖(Cκ(Sd−1))′ 6 CKl
‖ϕ‖CKl

(Rd) .

As this operator D is continuous when restricted to each CKl
(Rd), D is continuous on the strict

inductive limit of these spaces as well, i.e. on Cc(R
d).

Now we can apply Theorem 5, which gives us the unique µ ∈ D′
0,Q(R

d × Sd−1). By (9) and
(10), this µ satisfies the required equality µ(ϕ, ψ) = 〈Dϕ,ψ〉.

Q.E.D.

Remark 5. Note that in the proof we actually have shown that µ is a continuous bilinear form in
the product topology of Cc(R

d)×CQ(Sd−1). Therefore, by Theorem 5 (see also Remark 2(b)) we
can conclude that µ belongs to the space D′

2d,κ(R
d× Sd−1) as well, hence µ ∈ D′

0,(d−1)(κ+2)(R
d×

Sd−1) ∩ D′
2d,κ(R

d × Sd−1).

Remark 6. One can use Marcinkiewicz’s theorem instead of Hörmander-Mihlin’s for continuity
of the Fourier multipliers. This approach was used in [22, 25] where they had a variant of H-
measures and H-distributions on manifolds different than unit sphere. However, in this way one
requires a higher regularity of test functions in ξ (Cd(Sd−1)).

We shall say that (un) and (vn) form a pure pair of sequences if the associated H-distribution
is unique for all subsequences.

If (un) and (vn) are Lp and Lq sequences, respectively, defined on an open set Ω ⊆ Rd,
extending them by zero to the whole space, we would still retain weak and weak-∗ convergence of
corresponding sequences to corresponding limits. Then, applying the preceding theorem, we get
that the corresponding H-distribution is supported on ClΩ×Sd−1. Indeed, the claim follows easily
if one takes test functions supported within the complement of the closure ClΩ. The analogous
statement holds for Lploc(Ω) and Lqloc(Ω) sequences, if we can extend them by zero to the whole
space, which is not always possible (for example, take an L1

loc(〈0, 1〉) function x 7→ 1
|x| , which can

not be extended to an L1
loc(R

d) function).

Similar reasoning leads to the following result:

Corollary 4. Let (un) and (vn) be sequences from the preceding theorem. If there exist closed
sets F1 and F2 of Rd such that un keep their support in F1 and vn in F2, then the support of any
H-distribution corresponding to subsequences of (un) and (vn) is included in (F1 ∩ F2)× Sd−1.

Basic properties

One of the useful features of H-measures is that they can determine whether a weakly converg-
ing L2

loc sequence converges strongly in the same space. Namely, an L2
loc sequence will converge

to zero strongly if and only if the corresponding H-measure is zero. In this section we prove an
analogous property for H-distributions.

Canonical choice of the Lp
′

sequence corresponding to an Lp sequence (un) is given by vn =
Φp(un), where Φp is an operator from Lp(Rd) to Lp

′

(Rd) defined by Φp(u) = |u|p−2u.

Before we proceed, let us state some properties of operator Φp, for p ∈ 〈1,∞〉, which we shall
need later. First of all, Φp is a nonlinear Nemyckij operator, i.e. it is continuous from Lp(Rd) to

Lp
′

(Rd) and additionally we have the following bound

‖Φp(u)‖Lp′ (Rd) 6 ‖u‖
p/p′

Lp(Rd)
.

In the following lemma we generalise this to the spaces of locally integrable functions.
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Lemma 4. The Nemyckij operator Φp is continuous from Lploc(R
d) to Lp

′

loc(R
d), for any p ∈

〈1,∞〉.
In addition, we have the following bound for the respective seminorms:

|Φp(u)|ϑk,p′ 6 |u|
p/p′

ϑk+1,p
.

Dem. Take an arbitrary seminorm | · |ϑk,p′ from the definition of the metric dp′ and any u ∈
Lploc(R

d) in order to get the estimate

|Φp(u)|
p′

ϑk,p′
= ‖ϑkΦp(u)‖

p′

Lp′ (Rd)

=

∫

Rd

|ϑk(x)|
p′ |u(x)|(p−1)p′dx

=

∫

Rd

|ϑk(x)|
p′ |u(x)|pdx

6

∫

Rd

|ϑk+1(x)|
p|u(x)|pdx

= ‖ϑk+1u‖
p
Lp(Rd)

= |u|pϑk+1,p
.

For the inequality above we have used the fact that |ϑk(x)|
p′ 6 1 = |ϑk+1(x)|

p when x ∈ Kk+1.
From here we conclude that Φp maps bounded sets in Lploc(R

d) topology to bounded sets in

Lp
′

loc(R
d) topology (cf. [28, 6.1]). Moreover, if (un) is a bounded sequence in Lploc(R

d), then from
the above estimate we get

|Φp(un)|ϑk,p′ 6 |un|
p/p′

ϑk+1,p
< C

p/p′

ϑk+1,p
,

from which follows that (Φp(un)) is a bounded sequence in Lp
′

loc(R
d), which is a (semi-)reflexive

space. This implies that (Φp(un)) is weakly precompact in Lp
′

loc(R
d) (see [28, Theorem 15.2.4]).

To conclude, take arbitrary ε > 0, u ∈ Lploc(R
d) and k ∈ N. The continuity of Φp : L

p(Rd) →

Lp
′

(Rd) guarantees the existence of δ = δ(u, k, ε) > 0 such that

(∀v ∈ Lp(Rd))
(
‖v − ϑk+1u‖Lp(Rd) < δ =⇒ ‖Φp(v)− Φp(ϑk+1u)‖Lp′ (Rd) < ε

)
.

Take v ∈ Lploc(R
d) such that |v − u|ϑk+1,p < δ. We have the following:

|Φp(v)− Φp(u)|ϑk,p′ =
∥∥∥ϑk

(
Φp(v)− Φp(u)

)∥∥∥
Lp′ (Rd)

=
∥∥∥ϑkϑk+1

(
Φp(v)− Φp(u)

)∥∥∥
Lp′ (Rd)

=
∥∥∥ϑk

(
Φp(ϑk+1v)− Φp(ϑk+1u)

)∥∥∥
Lp′ (Rd)

6 ‖Φp(ϑk+1v)− Φp(ϑk+1u)‖Lp′ (Rd) < ε.

Since k was arbitrary, we conclude that Φp : L
p
loc(R

d) −→ Lp
′

loc(R
d) is continuous.

Q.E.D.

Now we can state the main result of this section:

Lemma 5. For a sequence (un) in Lploc(R
d), p ∈ 〈1,∞〉, the following are equivalent

a) un → 0 in Lploc(R
d),

b) for every sequence (vn) satisfying conditions of the existence theorem, (un) and (vn) form a
pure pair and the corresponding H-distribution is zero.
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Dem. For the first implication, it is enough to notice that due to the compact support of
test function ϕ1 and boundedness properties of the Fourier multiplier operator Aψ, we get that
Aψ(ϕ1un) → 0 in Lp(Rd), thus

lim
n

∫

Rd

Aψ(ϕ1un)(x)ϕ2vn(x)dx = 0 .

Take a sequence (Φp(un)). We have already concluded that it is bounded and weakly precompact

in Lp
′

loc(R
d). Taking symbol ψ to be equal to one (so that Aψ is the identity) and test functions

ϕ1 and ϕ2, we get

0 = lim
n

∫

Rd

(ϕ1un)(x)(ϕ2vn)(x)dx = lim
n

∫

Rd

ϕ1(x)ϕ2(x)|un(x)|
pdx ,

which implies un → 0 in Lploc(R
d), so we have a pure pair and the whole sequence (un) converges

to zero strongly in Lploc(R
d).

Q.E.D.

Remark 7. Let us notice that in the previous Lemma, we have proved that the two claims in
(a) and (b) are equivalent to

b’) un and (Φp(un)) form a pure pair and the corresponding H-distribution is zero.

Remark 8. It is easy to see that claim in (b) does not imply strong convergence to zero in
Lp(Rd) of the sequence (un) in Lp(Rd). Indeed, take a nontrivial u ∈ Lpc(Rd) and a unit vector
e ∈ Sd−1. Define a sequence un(x) = u(x − ne) which weakly converges to zero in Lp(Rd). The
support of un goes to infinity so the corresponding H-distribution is zero, while un does not
converge to zero strongly in Lp(Rd).

Let (un) be a sequence weakly converging to 0 in Lploc(R
d). Then the sequence (|un|

p) is

bounded in L1
loc(R

d), so |un|
p ∗
−⇀ ν in D′(Rd) (up to a subsequence). Since all elements of the

sequence (|un|
p) are positive (in terms of distributions), the limit ν is a positive distribution,

hence an (unbounded) Radon measure.

On the other hand, let µ be any H-distribution corresponding to the above chosen subsequence
of (un) and (Φp(un)). Taking ψ to be equal to one and test functions ϕ1, ϕ2 such that ϕ2 is equal
to one on the support of ϕ1, we get the following connection between µ and ν:

〈µ, ϕ1 ⊠ 1〉 = lim
n

∫

Rd

ϕ1|un|
pdx = 〈ν, ϕ1〉.

We summarise this observation in the following

Corollary 5. Let (un) converge weakly to zero in Lploc(R
d), for some p ∈ 〈1,∞〉, and let

(|un|
p) converge weakly-∗ to a measure ν in the space of unbounded Radon measures M(Rd)

(i.e. distributions of order zero). Then for any ϕ ∈ Cc(R
d), it holds

〈µ, ϕ⊠ 1〉 = lim
n

∫

Rd

ϕ|un|
pdx = 〈ν, ϕ〉,

where µ is any H-distribution corresponding to some subsequences of (un) and (Φp(un)).

At this point the reader might wonder if there is a connection between H-distributions and
microlocal compactness forms [33]. The answer is positive, but it would take us to far to precisely
describe it here. Instead, we point the interested reader to a recent paper [8] (in particular,
cf. Theorem 10 in the aforementioned reference).

Nenad Antonić & Marko Erceg & Marin Mǐsur 23



Distributions of anisotropic order and applications

Let us see what happens when we change the positions of sequences (un) and (vn) in a pair
of pure sequences:

lim
n→∞

∫

Rd

(ϕ1vn)(x)Aψ(ϕ2un)(x)dx = lim
n→∞

∫

Rd

(ϕ2un)(x)Aψ(ϕ1vn)(x)dx =

= lim
n→∞

∫

Rd

(ϕ2un)(x)Aψ(ϕ1vn)(x)dx =

=
〈
µ, ϕ1ϕ2 ⊠ ψ

〉
=
〈
µ, ϕ1ϕ2 ⊠ ψ

〉
,

where µ is the H-distribution corresponding to sequences (un) and (vn).
Next, we turn our attention to the relation between H-distributions corresponding to con-

jugated sequences. First we shall prove some auxiliary results. It is easy to see that for any
v ∈ S(Rd) we have:

v̂(ξ) =

∫

Rd

e−2πix·ξv(x)dx =

∫

Rd

e2πix·ξv(x)dx = v̌(ξ) ,

and analogously v̌ = v̂. Using these relations, we arrive at the following chain of equalities valid
for any ψ ∈ Cκ(Sd−1):

Aψ(v) = (ψv̂)∨ = (ψv̌)∨ =
(
ψv̌
)∨

= ψ̂v̌.

Let us rewrite the last term above:

ψ̂v̌(x) =

∫

Rd

e−2πiξ·xψ(ξ)v̌(ξ)dξ =

∫

Rd

e2πiη·xψ(−η)v̌(−η)dη =

∫

Rd

e2πiη·xψ̃(η)v̂(η)dη

=
(
ψ̃v̂
)∨

(x) = A
ψ̃
(v)(x),

where we have used the change of variables η = −ξ and the notation ṽ(x) = v(−x). Since Aψ

(and A
ψ̃
) are continuous on Lp(Rd), while S(Rd) is dense in Lp(Rd), we have shown that for any

v ∈ Lp(Rd) the equality Aψ(v) = A
ψ̃
(v) holds. Now, we can write

lim
n
〈Aψ(ϕ1un), ϕ2vn〉 = lim

n
〈Aψ(ϕ1un), ϕ2vn〉 = lim

n

〈
A
ψ̃
(ϕ1un), ϕ2vn

〉

= lim
n

〈A
ψ̃
(ϕ1un), ϕ2vn〉 =

〈
µ, ϕ1ϕ2 ⊠ ψ̃

〉

= 〈µ, ϕ1ϕ2 ⊠ ψ̃〉 = 〈µ̃, ϕ1ϕ2 ⊠ ψ〉,

where µ is the H-distribution corresponding to subsequences of (un) and (vn) and in the last step
the tilde operation is taken only with respect to the ξ variable.

We have thus proven the following

Lemma 6. Let (un) and (vn) form a pure pair of sequences and let µ be the corresponding
H-distribution. Then the following holds:
a) The pair (vn) and (un) is also pure, and the H-distribution corresponding to (vn) and (un)

is µ.
b) (un) and (vn) is a pure pair and the corresponding H-distribution is µ̃, where the tilde

operation is taken only with respect to the dual variable.

5. Examples and applications

An example with concentration
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Vitali’s convergence theorem gives sufficient and necessary conditions under which a sequence
of Lp functions converges strongly to a measurable function in Lp. One of them is uniform
integrability, which implies that there are no concentration effects in the sequence. Hence, it is
of interest to consider concentration effects in weakly converging sequences.

For p ∈ 〈1,∞〉, z ∈ Rd, and n ∈ N, let us define a linear operator ζp,n on Lp(Rd) by

(11) ζp,nu(x) = n
d
pu(n(x− z)) .

A simple change of variables shows that ζp,n is a linear isometry on Lp(Rd), i.e. ‖ζp,nu‖Lp(Rd) =

‖u‖Lp(Rd). Moreover, for any u ∈ Lp(Rd) the sequence (ζp,nu) weakly converges to 0 in Lp(Rd).
Let us first show this convergence under an additional assumption that function u has a

compact support. Since (ζp,nu) is bounded sequence in Lp(Rd), it is sufficient to test it on a

continuous test function ϕ with compact support (as such functions form a dense set in Lp
′

(Rd)).
Thus, we get ∫

Rd

ζp,nu(x)ϕ(x) dx =

∫

Rd

nd/pu(n(x− z))ϕ(x) dx

=

∫

Rd

nd/p−du(y)ϕ(y/n+ z) dy

=
1

nd/p′

∫

suppu
u(y)ϕ(y/n+ z) dy

6

(vol(suppu)
nd

)1/p′
‖u‖Lp(Rd)max

Rd
|ϕ| ,

where we have used the change of variables y = n(x − z) in the second equality and the Hölder
inequality in the last step. Passing to the limit n→ ∞, we get our claim.

In a general situation one just needs to approximate u with a sequence of functions with
compact support in the space Lp(Rd). Indeed, let um −→ u in Lp(Rd); then for any m ∈ N one
has

|〈ζp,nu, ϕ〉| =
∣∣∣〈ζp,num, ϕ〉+ 〈ζp,n(u− um), ϕ〉

∣∣∣ 6 |〈ζp,num, ϕ〉|+ ‖u− um‖Lp‖ϕ‖Lp′ .

Passing to the limit in n we get

lim sup
n→∞

|〈ζp,nu, ϕ〉| 6 ‖u− um‖Lp‖ϕ‖Lp′ ,

which can be made arbitrary small by choosing large enough m.

For arbitrary u ∈ Lp(Rd) and v ∈ Lp
′

(Rd), 1/p + 1/p′ = 1, we shall show that the H-
distribution corresponding to sequences (ζp,nu) and (ζp′,nv) is given by δz ⊠ ν, where ν is a
distribution on Cκ(Sd−1) defined for ψ ∈ Cκ(Sd−1) by

〈ν, ψ〉 =

∫

Rd

u(x)Aψ̄v(x) dx .

Since the Nemyckij operator Φp and ζp,n commute in the following sense: for u ∈ Lp(Rd)

Φp(ζp,nu)(x) = |n
d
pu(n(x− z))|p−2n

d
pu(n(x− z))

= n
d(p−1)

p |u(n(x− z))|p−2u(n(x− z)) = ζp′,nΦp(u) ,

by taking v = Φp(u) we reveal the canonical choice of the Lp
′

sequence corresponding to (ζp,nu),
i.e. ζp′,nv = Φp(ζp,nu).

Before we proceed, we shall need the following two lemmata:
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Lemma 7. Let p ∈ 〈1,∞〉 and z ∈ Rd. For any u ∈ Lp(Rd) and ϕ ∈ Cc(R
d) it holds

ϕζp,nu− ϕ(z)ζp,nu −→ 0 in Lp(Rd) .

Dem. Using the change of variables y = n(x− z), we get

∫

Rd

|ϕ(x)ζp,nu(x)− ϕ(z)ζp,nu(x)|
p dx =

∫

Rd

|ϕ(y/n+ z)− ϕ(z)|p|u(y)|p dy ,

which goes to 0 as n tends to infinity, by the Lebesgue dominated convergence theorem.
Q.E.D.

Lemma 8. For any ψ ∈ Cκ(Sd−1), p ∈ 〈1,∞〉, z ∈ Rd, and n ∈ N, the operators Aψ and ζp,n
commute on Lp(Rd).

Dem. For v ∈ S(Rd), we have

Aψ(ζp,nv)(x) = n
d
p F̄
(
ψ(ξ/|ξ|)

∫

Rd

e−2πiy·ξv(n(y − z)) dy
)
(x)

= n
d
p F̄
(
n−de−2πiz·ξψ(ξ/|ξ|)

∫

Rd

e−2πiw
n
·ξv(w) dw

)
(x)

= n
d
pn−dF̄

(
e−2πiz·ξψ(ξ/|ξ|)v̂(ξ/n)

)
(x)

= n
d
pn−d

∫

Rd

e2πi(x−z)·ξψ(ξ/|ξ|)v̂(ξ/n) dξ

= n
d
p

∫

Rd

e2πiη·(n(x−z))ψ(η/|η|)v̂(η) dη = ζp,n(Aψv)(x) ,

where we have used the change of variables n(y − z) = w in the second equality and nη = ξ

in the penultimate one. Since S(Rd) is dense in Lp(Rd), while Aψ and ζn,p are continuous on
Lp(Rd), we get the claim.

Q.E.D.

Now, let us go back to the construction of H-distributions corresponding to sequences (ζp,nu)

and (ζp′,nv), where u ∈ Lp(Rd) and v ∈ Lp
′

(Rd) are arbitrary, and ζp,n is given by (11). Moreover,
we shall show that (ζp,nu) and (ζp′,nv) form a pure pair.

Taking test functions ϕ1 and ϕ2 to be continuous with compact supports, and ψ ∈ Cκ(Sd−1),
we get the following

lim
n

∫

Rd

ϕ1(x)(ζp,nu)(x)Aψ̄(ϕ2ζp′,nv)(x) dx = ϕ1(z)ϕ̄2(z) lim
n

∫

Rd

(ζp,nu)(x)Aψ̄(ζp′,nv)(x) dx

= ϕ1(z)ϕ̄2(z) lim
n

∫

Rd

(ζp,nu)(x)ζp′,nAψ̄(v)(x) dx

= ϕ1(z)ϕ̄2(z) lim
n

∫

Rd

ndu(n(x− z))Aψ̄(v)(n(x− z)) dx

= ϕ1(z)ϕ̄2(z) lim
n

∫

Rd

u(y)Aψ̄(v)(y) dy

=
〈
A
ϕ1(z)ϕ̄2(z)ψ

(v), u
〉
,

where we have used the preceding lemmata in the first and second equalities, and the change of
variables y = n(x− z) in the fourth one. In the last step we have noticed that the expression on
the right hand side does not depend on n anymore.
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The last expression can be extended by density to the whole C0,κ
c (Rd×Sd−1), thus we finally

get that (ζp,nu) and (ζp′,nv) form a pure pair, and the H-distribution is given by

(12) 〈µ,Ψ〉 =
〈
AΨ̄(z,·)(v), u

〉
, Ψ ∈ C0,κ

c (Rd × Sd−1) .

Remark 9. For a given p ∈ 〈1,∞〉, if we had chosen u ∈ Lrc(R
d), where r > max{2, 2p − 2}

(case r = ∞ included), and v = Φp(u), we would have been able to use Plancherel’s theorem and
rewrite the integral in polar coordinates to get

〈µ, ϕ1 ⊠ ψ〉 = ϕ1(z)

∫

Rd

û(ξ)ψ(ξ/|ξ|)(|u|p−2u)∧(ξ)dξ

= ϕ1(z)

∫

Sd−1

∫ ∞

0
û(tη)ψ(η)(|u|p−2u)∧(tη)td−1dt dη,

since the given bound on r and the compactness of suppu imply that both functions u and v are
contained in L2(Rd).

In this example we got better (lower) orders than those that are provided by Theorem 7. In
fact, the order (0, κ), which is achieved in this example, is the best we can hope for H-distributions
as we have that they are continuous bilinear forms on Cc(R

d)×Cκ(Sd−1). However, the question
of the optimal value of κ, which is dictated by the Hörmander-Mihlin theorem, remains open.

Concerning the value of κ, the case κ = 0 is particularly desirable since in that case we would
have that H-distributions are Radon measures. Unfortunately, already by this example we can
refute the claim that all H-distributions are Radon measures, i.e. there exist u ∈ Lp(Rd) and
v ∈ Lp

′

(Rd) such that the H-distribution for concentrating sequences as above is not a Radon
measure. This is the content of the following subsection.

Not all H-distributions are Radon measures

In this subsection we shall see that for any p ∈ 〈1,∞〉 there exist u ∈ Lp(Rd) and v ∈ Lp
′

(Rd)
such that the H-distribution associated to sequences (ζp,nu) and (ζp′,nv) (see (11)) is not a Radon
measure. By (12) it is sufficient to find a sequence of functions ψn ∈ C∞(Sd−1), bounded in

C(Sd−1), but for which
(
|〈Aψ̄n

v, u〉|
)

is unbounded. Of course, it is neccesary that (ψn) is

unbounded in Cκ(Sd−1).

Take ψ ∈ C∞(Sd−1) such that ‖ψ‖L∞(Sd−1) = 1. Then for any n ∈ N, for the n-th power of

ψ we have that ψn ∈ C∞(Sd−1) and ‖ψn‖L∞(Sd−1) = 1. By the Banach-Steinhaus theorem the

uniform boundedness in n of (Aψ̄n) in L(Lp(Rd); Lp(Rd)) (here we assume that ψ̄n is extended

to Rd \ {0} along rays through the origin, as usual) is equivalent to the property that for any

u ∈ Lp(Rd) and v ∈ Lp
′

(Rd) the sequence
(
|〈Aψ̄nv, u〉|

)
is bounded. Indeed, the first implication

is trivial, while to prove the latter we first apply the Banach-Steinhaus theorem to v 7→ 〈Aψ̄nv, u〉
(for an arbitrary u), and then to Aψ̄n .

Thus, it is sufficient to find ψ ∈ C∞(Sd−1), ‖ψ‖L∞(Sd−1) = 1, such that (Aψ̄n) is not uniformly

bounded in L(Lp(Rd); Lp(Rd)) as then, by the above equivalence, the mapping ψ 7→ 〈Aψ̄v, u〉

cannot be continuous on C(Sd−1), implying that the H-distribution above is not a Radon measure.

For an example of such ψ in two space dimensions (d = 2) one can consider the symbol of the
Ahlfros-Beurling operator (see e.g. [11]) which is given by ψ0(ξ1, ξ2) := ξ1 + iξ2 since it is known
that for any p ∈ 〈1,∞〉 the sequence of real numbers ‖Aψ̄n

0
‖L(Lp(R2);Lp(R2)) goes to infinity as n

tends to infinity [11, Theorem 1.1 and Theorem 1.4].

Concerning the example in higher dimensions, we shall generalise the previous one by the
method of dilations (see e.g. [30, Section 4.2]). For k ∈ N, let us define ψk : R2 × Rk →
R by ψk(ξ,η) := ψ0(ξ) = ξ1 + iξ2, and suppose that for some p ∈ 〈1,∞〉 the sequence of
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operators (Aψ̄n
k
)n is uniformly bounded on Lp(R2+k), i.e. there exists C > 0 (depending on k,

but independent of n) such that for any f ∈ Lp(R2+k) we have

‖Aψ̄n
k
f‖Lp(R2+k) 6 C‖f‖Lp(R2+k) .

For t > 0 we define Tn,t := δ−1
t ◦ Aψ̄n

k
◦ δt, where δt is a dilation operator given by the following:

for g : R2 × Rk → R we let δtg(ξ,η) := g(ξ, tη). It is easy to see that the family of operators
(Tn,t)n∈N, t>0 is uniformly bounded (in both n and t) as well. Indeed, we have

‖Tn,tf‖Lp(R2+k) = tk/p‖Aψ̄n
k
(δtf)‖Lp(R2+k) 6 tk/pC‖δtf‖Lp(R2+k) = C‖f‖Lp(R2+k) .

Further on, one can easily check that the Fourier transform F and δt satisfy the identity
F = tkδt ◦ F ◦ δt. Thus, for an arbitrary f ∈ L2(R2+k) ∩ Lp(R2+k) it holds

T̂n,tf(ξ,η) = (δt ◦ ψ̄
n
k ◦ π)(ξ,η)f̂(ξ,η)

=

(
ξ1 − iξ2√
|ξ|2 + t2|η|2

)n
f̂(ξ,η)

(here projection π appears due to the extension of ψ̄nk to R2+k \ {0}). Let us fix one such f .
Now the Lebesgue dominated convergence theorem and the Plancherel theorem imply that for
any n ∈ N

lim
t→0+

Tn,tf = Tn,0f

in L2(R2+k), where T̂n,0f(ξ,η) :=
(
ξ1−iξ2

|ξ|

)n
f̂(ξ,η). This implies existence of a sequence of

positive numbers (tm) converging to 0 for which (Tn,tmf)m converges almost everywhere to Tn,0f .
Finally, by Fatou’s lemma we get

‖Tn,0f‖Lp(R2+k) 6 lim inf
m

‖Tn,tmf‖Lp(R2+k) 6 C‖f‖Lp(R2+k) .

Since f ∈ L2(R2+k) ∩ Lp(R2+k) was arbitrary, by density the above estimate holds for any
f ∈ Lp(R2+k).

For arbitrary f ∈ Lp(R2) and g ∈ Lp(Rk), g 6= 0, we have Tn,0(f ⊠ g) = (Aψ̄n
0
f)⊠ g, hence

‖Aψ̄n
0
f‖Lp(R2) =

‖Tn,0(f ⊠ g)‖Lp(R2+k)

‖g‖Lp(Rk)

6 C‖f‖Lp(R2) .

However, this is in contradiction with the unboundedness of Aψ̄n
0
. Thus, Aψ̄n

k
must be unbounded

as well.
To conclude, with the argument above we have proved that there exist H-distributions which

are not Radon measures. Therefore, our kernel theorem (Theorem 5) is really meaningful when
applied on H-distributions. Nevertheless, one could still think of whether the order can be im-
proved when for the Lp

′

sequence (vn) one takes precisely the canonical choice (Φp(un)). Although
the above counterexample does not say anything for this specific case, the authors believe that
even for such (vn)-s in general H-distributions are not Radon measures.

Perturbations and approximations of symbols

Let (un) be a sequence weakly converging to 0 in Lploc(R
d) for some p ∈ 〈1,∞〉 and vn

∗
−⇀

v in Lqloc(R
d) for q > p′. Consider a sequence (dn) strongly converging to zero in Lploc(R

d).
Then un + dn −⇀ 0 in Lploc(R

d) and we may ask ourselves if there exists a connection between
the H-distribution µ corresponding to subsequences of (un) and (vn) and the H-distribution µd
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corresponding to subsequences of (un+dn) and (vn). It is easy to see that these two H-distributions
are the same:

∫

Rd

ϕ1(un + dn)Aψ̄(ϕ2vn)dx =

∫

Rd

ϕ1unAψ̄(ϕ2vn)dx+

∫

Rd

ϕ1dnAψ̄(ϕ2vn)dx .

The left hand side goes to 〈µd, ϕ1ϕ̄2⊠ψ〉, the second term on the right hand side goes to 0, as the
Fourier multiplier Aψ̄ is a bounded operator on Lq(Rd), while the first term goes to 〈µ, ϕ1ϕ̄2⊠ψ〉.

In the above, we could have perturbed sequence (vn) by a sequence strongly converging to
zero in Lqloc(R

d) as well. We would still get the same conclusion. In particular, by choosing
p = q = 2 we obtain a similar result for H-measures.

Now, let us turn our attention to generating sequences. We would like to know if we could
use a smoother sequence to obtain the same H-distribution. Assume that we are given a family
of sequences (umn ) in C∞

c (Rd) such that umn −→ un in Lploc(R
d), for each fixed n, as m→ ∞. We

can always find such approximating sequences since the space C∞
c (Rd) is dense in Lploc(R

d) for

p <∞. By using the Cantor diagonal procedure, we can extract a subsequence wk = u
m(k)
k such

that dp(wk, uk) 6 1/k. It is straightforward to see that wk weakly converges to zero in Lploc(R
d):

for every ϕ ∈ Lp
′

c (Rd) it holds

∫

Rd

wkϕ =

∫

Rd

(wk − uk)ϕ+

∫

Rd

ukϕ .

The claim follows from the strong convergence of (wk − uk) and the weak convergence of (uk).

Lemma 9. The above defined sequences (wn) and (un) generate the same H-distribution. In

other words, for any ϕ1, ϕ2 ∈ Cc(R
d), ψ ∈ Cκ(Sd−1) and any sequence vn

∗
−⇀ v in Lqloc(R

d) for
q > p′, it holds

lim
n

∫

Rd

ϕ1wnAψ̄(ϕ2vn)dx = lim
n

∫

Rd

ϕ1unAψ̄(ϕ2vn)dx .

Dem. By the Hölder inequality, we get

lim
n

∫

Rd

|ϕ1(wn − un)Aψ̄(ϕ2vn)dx| 6 lim
n

||ϕ1(wn − un)||Lp(Rd)||Aψ̄(ϕ2vn)||Lp′ (Rd)

6 Cψ lim
n

||ϕ1(wn − un)||Lp(Rd)||ϕ2vn||Lp′(Rd) ,

where we have used the boundedness of the Fourier multiplier operator Aψ̄ in the second in-

equality. Since the sequence (ϕ2vn) is bounded in Lp
′

, we get that the right hand side goes to
zero.

Q.E.D.

If q < ∞, we can approximate vn by sequences of smooth functions in Lqloc(R
d) as well.

Analogously as we did with (un), we would arrive at a smooth sequence (gn) such that dq(gk, vk) 6
1/k. We have the following:

Corollary 6. If q ∈ [p′,∞〉, the pairs (un), (vn) and (wn), (gn) generate the same H-distribution.
In other words, for any ϕ1, ϕ2 ∈ Cc(R

d) and ψ ∈ Cκ(Sd−1), it holds:

lim
n

∫

Rd

ϕ1wnAψ̄(ϕ2gn)dx = lim
n

∫

Rd

ϕ1unAψ̄(ϕ2vn)dx .

As a consequence, we get a similar statement in the case of H-measures:

Corollary 7. If a sequence (un) in L2(Rd) generates an H-measure, then there exists a smooth
sequence which generates the same H-measure.
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Corollary 6 also covers the case when we use (Φp(un)), the canonical L
p′

loc-sequence associated

with (un). We could approximate it with some other sequence in Lp
′

loc. However, it would be
convenient if we could choose a smooth sequence (wn) approximating (un) such that (Φp(wn))

approximates (Φp(un)). This can be achieved because Φp : L
p
loc(R

d) −→ Lp
′

loc(R
d) is continuous:

repeating the construction from the beginning of this section, we need to choose m(k) ∈ N such

that for wk = u
m(k)
k it holds both dp(wk, uk) 6 1/k and dp′(Φp(wk),Φp(uk)) 6 1/k.

Corollary 8. Two pairs of sequences (un), (Φp(un)) and (wn), (Φp(wn)), where (wn) is chosen
as above, generate the same H-distribution. In other words, for any ϕ1, ϕ2 ∈ Cc(R

d) and ψ ∈
Cκ(Sd−1), it holds:

lim
n

∫

Rd

ϕ1wnAψ̄(ϕ2Φp(wn))dx = lim
n

∫

Rd

ϕ1unAψ̄(ϕ2Φp(un))dx .

Our next step is to show that we can improve the regularity of symbol ψ ∈ Cκ(Sd−1). Actually,
we have the following lemma:

Lemma 10. Let un −⇀ 0 in Lploc(R
d) for some p ∈ 〈1,∞〉 and vn

∗
−⇀ v in Lqloc(R

d) for q > p′.
Let ψ ∈ Cκ(Sd−1) and ψk ∈ C∞(Sd−1) be as above. Then for any ϕ1, ϕ2 ∈ C∞

c (Rd) it holds

lim
n

∫

Rd

ϕ1unAψ(ϕ2vn)dx = lim
k

lim
n

∫

Rd

ϕ1unAψk
(ϕ2vn)dx .

Dem. Similarly as we did for the bound of µn,l in the proof of the existence of H-distributions
(Theorem 6), we arrive at the following

∣∣∣lim
n

∫

Rd

ϕ1unAψ−ψk
(ϕ2vn)dx

∣∣∣ 6 Cd,p‖ϕ1ϕ2‖CKl
(Rd)‖ψ − ψk‖Cκ(Sd−1) 6

Cd,p
k

‖ϕ1ϕ2‖CKl
(Rd) .

Passing to the limit k → ∞ we get the conclusion.
Q.E.D.

Remark 10. Throughout this paper we have used symbols associated to functions ψ ∈
Cκ(Sd−1) by composing ψ with projection π fromRd\{0} to Sd−1. As it is well known in the theory
of pseudo-differential calculus, we can replace such symbols by ψ̃ ∈ Cκ(Rd) functions which are
identically equal to ψ◦π only for large |ξ|. Indeed, one needs to notice that η(ξ) := ψ̃(ξ)−(ψ◦π)(ξ)
is a bounded Cκ(Rd \ {0}) function with compact support. Thus, Aη is a compact operator from
Lpc(Rd) to Lploc(R

d) which, for un −⇀ 0 in Lploc(R
d), implies that

0 = lim
n

∫

Rd

Aη(ϕ1un)(x)(ϕ2vn)(x)dx = lim
n

∫

Rd

Aψ̃(ϕ1un)(x)(ϕ2vn)(x)dx−

− lim
n

∫

Rd

Aψ◦π(ϕ1un)(x)(ϕ2vn)(x)dx.

Hence,

lim
n

∫

Rd

Aψ̃(ϕ1un)(x)(ϕ2vn)(x)dx =
〈
µ, ϕ1ϕ2 ⊠ ψ

〉
,

where we understand the right hand side in the sense of existence theorem on H-distributions
(Theorem 7).

Compactness by compensation

It is well-known that weak convergences are ill behaved under nonlinear transformations (in
contrast to their good behaviour under linear transformations). However, under some additional
conditions, namely some control on the derivatives of functions in the sequence, we can pass to
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the limit in the weak (∗) sense, the corresponding limit being the nonlinear transformation of the
weak limit. The theory of compactness by compensation (or compensated compactness) studies
products, or quadratic terms of weakly converging sequences. A typical example of this theory
is Tartar-Murat’s div-curl lemma [27], which was soon after generalised to the case of constant
coefficients, and then to the Lp−Lp

′

setting. Further generalisation to variable coefficients in the
L2 case was derived using the localisation principle for H-measures in [38], and much later in [3]
for situations with a scaling parameter. Similarly, a generalisation to the Lp case was obtained by
the localisation principle for H-distributions [7], where a significant drawback was the fact that
all the coefficients had to be smooth (i.e. C∞), as we had to multiply distributions by them. One
of the main motivations for this project was precisely the need to bypass this shortcoming, which
is done by establishing a finer version of the existence theorem for H-distributions (see Theorem
7).

Indeed, by following closely the proof of [7, Theorem 4.1] and having in mind that H-
distributions are anisotropic distributions in D′

0,Q, we get the following generalisation of the
localisation principle for H-distributions.

Theorem 8. Assume that un −⇀ 0 in Lploc(R
d) and fn −→ 0 in W−1,q

loc (Rd) for some p ∈ 〈1,∞〉
and q ∈ 〈1, d〉, such that they satisfy

d∑

i=1

∂i(ai(x)un(x)) = fn(x) ,

where ai ∈ C(Rd). Take an arbitrary sequence (vn) bounded in L∞
loc(R

d), and by µ denote the
H-distribution corresponding to some subsequences of sequences (un) and (vn). Then,

d∑

i=1

ai(x)ξiµ(x, ξ) = 0

in the sense of anisotropic distributions D′
0,Q(R

d × Sd−1), where Q = (d − 1)(κ + 2), while
κ = ⌊d/2⌋+ 1.

Let us emphasise once more that the main improvement of the above result is in having
continuous coefficients of the differential operator, while before one needed to require smooth
coefficients.

The same applies for other known results on H-distributions of this type [22, 25].
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[25] Marin Mǐsur, Darko Mitrović: On a generalization of compensated compactness in the Lp − Lq

setting, J. Funct. Anal. 268 (2015) 1904–1927.
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Nenad Antonić & Marko Erceg & Marin Mǐsur 32


