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Patterns of diverse gene functions 
in genomic neighborhoods predict 
gene function and phenotype
Matej Mihelčić1,2,3,4, Tomislav Šmuc   1 & Fran Supek   2,5*

Genes with similar roles in the cell cluster on chromosomes, thus benefiting from coordinated 
regulation. This allows gene function to be inferred by transferring annotations from genomic 
neighbors, following the guilt-by-association principle. We performed a systematic search for co-
occurrence of >1000 gene functions in genomic neighborhoods across 1669 prokaryotic, 49 fungal 
and 80 metazoan genomes, revealing prevalent patterns that cannot be explained by clustering of 
functionally similar genes. It is a very common occurrence that pairs of dissimilar gene functions 
– corresponding to semantically distant Gene Ontology terms – are significantly co-located on 
chromosomes. These neighborhood associations are often as conserved across genomes as the 
known associations between similar functions, suggesting selective benefits from clustering of certain 
diverse functions, which may conceivably play complementary roles in the cell. We propose a simple 
encoding of chromosomal gene order, the neighborhood function profiles (NFP), which draws on 
diverse gene clustering patterns to predict gene function and phenotype. NFPs yield a 26–46% increase 
in predictive power over state-of-the-art approaches that propagate function across neighborhoods, 
thus providing hundreds of novel, high-confidence gene function inferences per genome. Furthermore, 
we demonstrate that copy number-neutral structural variation that shapes gene function distribution 
across chromosomes can predict phenotype of individuals from their genome sequence.

The role of many genes remains unknown. Even in well-investigated model organisms, a quarter or more of the 
genes have poorly characterized function. With the advance of genome sequencing techniques, the vast amounts 
of accumulated data provide an opportunity to infer gene function using computational methods. While such 
methods occur in many varieties, one widespread approach is to examine the composition of gene neighborhoods 
that occur across genomes. Then, following the principle of guilt-by-association, a function of a gene is inferred 
by transferring it from its neighbors in the genome1,2. Gene neighborhoods that are conserved across multiple 
genomes provide additional confidence in each inference, often yielding highly accurate predictive modes of gene 
function3–7. One important biological mechanism that underlies similarity of gene function in neighboring genes 
is that they are often regulated by common factors and therefore co-expressed (reviewed in8,9). The prime example 
is the prokaryotic operon, where a single mRNA harboring multiple protein-coding regions is transcribed from 
a promoter, ensuring that expression of such functionally related proteins is coordinated. However, this con-
cept extends more broadly – neighboring genes that are not part of the same operon are also often co-regulated 
and share function. Moreover, in eukaryotic organisms, which generally lack operons, gene regulation is also 
organized regionally and this pattern can be conserved across evolutionary time10–14. Consistently, gene function 
is non-randomly distributed also across eukaryotic chromosomes15,16, even though the neighborhood signal is 
overall more subtle than in prokaryotes, important exceptions notwithstanding (reviewed in17).

The current computational methods that use conserved gene neighborhoods to predict gene function rely on 
the principle that similar functions cluster together on the chromosomes. While there is abundant evidence that 
this is the case, we were intrigued by known individual examples of conserved clustering of genes with apparently 
unrelated functions. For instance, a metabolic gene (FAD synthase) was reported to hitchhike with clusters of 
protein translation-related genes, and RNA modification/degradation genes were found to hitchhike with signal 
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transduction genes18,19. We asked if these examples represent a broader trend, which could be tapped into to 
better predict gene/protein function and phenotypes from genomic sequence. More specifically, we searched 
for pairs of gene functions that are highly dissimilar, according to the structure of the Gene Ontology, yet that 
systematically cluster in genomic neighborhoods. If found, such clustering patterns would be able to predict gene 
function by drawing on information which is not accessible to previous automated approaches, which propagate 
a particular gene function across genomic neighborhoods. If this type of clustering of diverse functions were 
widespread i.e. if it affected many genes, it would provide a basis for a general methodology to infer gene function 
that relaxes the requirement for homogeneity of function across neighborhoods.

Here, we examined the functional composition of genomic neighborhoods across 1669 prokaryotic, 49 fungal 
and 80 metazoan genomes (for more details see Supplementary Material 1, Section S1), finding that indeed it is a 
very common occurrence that certain pairs of unrelated functions cluster together. Almost all gene functions are 
significantly enriched in the genomic neighborhood of one or more semantically distant gene functions. Drawing 
on this signal to infer gene function results in 3.5-fold increase in predictive power (estimated by the information 
accretion criterion) over a naïve guilt-by-association approach, and an 1.4-fold increase over a state-of-the-art 
network approach. In addition to predicting gene function, accounting for the complementarity patterns in 
genomic neighborhoods enhances prediction of phenotype from copy number-neutral structural variation in 
genomes of individuals. Our work highlights a widespread pattern in how gene function is organized across 
chromosomal domains. This has implications for understanding genome evolution and brings practical benefits 
for methods to predict gene function and phenotype from the genome sequence.

Results
Widespread clustering of diverse gene functions across chromosomes.  It is known that func-
tionally related genes reside in the same genomic neighborhood more often than expected at chance3–7,15–17. We 
employed a simple framework to systematically quantify the extent of such co-occurrence in neighborhoods 
across many genomes, separately for individual gene functions. In brief, we used COG (clusters of orthologous 
groups) and NOG (non-supervised orthologous groups) gene families, to each of which we assigned a set of 
gene functions, herein represented by Gene Ontology (GO) terms. Of note, here we refer to function in a general 
sense, encompassing all three sub-ontologies of the GO: biological process (BP), molecular function (MF) and 
cellular component (CC). These assignments of function to COG/NOG gene families were based on the known 
functions of the constituent genes of each COG/NOG (henceforth jointly referred to as COG) (Methods). The 
mapping of COG gene families to GO terms allowed us to determine whether a certain GO term x is enriched 
in the genomic neighborhood of any gene assigned to this same function x, normalized to the prevalence of x 
outside such neighborhoods, examined across 1669 prokaryotic genomes. This yields an odds ratio (ORx), which 
describes the effect size of the enrichment of each function GO x in a neighborhood of size k of other genes hav-
ing the same GO x. Given that operons tend to be short20, we present the data for prokaryotes with k = 2 (we also 
provide analyses covering larger neighborhood sizes in Supplementary document 1, Figure S27, relevant in the 
light of work suggesting that bacterial functional neighborhoods may extend up to 20 kb21,22). The neighborhood 
is defined here as two genes to each side of a central gene, corresponding to a total size of five genes–one central 
and four flanking (irrespective of orientation). We were able to examine a total of 1048 GO terms that occured 
in at least 5 COG gene families. Out of these GO terms, 81.5% had neighborhoods significantly enriched in that 
same GO term (ORx > 1 at FDR < 20%; Z-test for significance of log odds ratio; Methods) and in 78.8% was the 
enrichment significant and also higher than twofold (ORx ≥ 2). In the usually larger eukaryotic genomes, we 
considered neighborhoods of k = 5 genes to each side of a central gene, and examined the 2617 GO terms (fungi) 
and 2336 terms (metazoa) that occurred in at least 3 gene families (for more detailed analyses of different neigh-
bourhood size see Supplementary document 1, Figure S27). Across eukaryotes, 35.1% of the analyzed GO terms 
are significantly enriched in their own neighborhoods across 49 fungal genomes, and 99.1% of GO terms across 
80 metazoan genomes. These enrichments and significance calls are upheld by comparing them to enrichments 
computed on randomized data (see Methods and Supplementary material 1, Table S3). The above data are con-
sistent with the known clustering of genes with similar functions across genomes15,23,24 and demonstrate that our 
approach can be used to detect function enrichment in genomic neighborhoods.

Next, we applied the same method to exhaustively test for enrichment of pairs of diverse GO functions in 
genomic neighborhoods (see Fig. 1). In particular, we measured the enrichment (as odds ratio, ORxy) of the genes 
annotated with a GO term y that are near genes with GO term x, again in a neighborhood of k = 2 genes to each 
side thereof. Indeed we found that 2.9 × 105 of 1.1 × 106 total examined pairs of GO terms in prokaryotes are sig-
nificantly enriched (FDR < 20%, Z-test on log ORxy). This means that all of the tested GO terms were significantly 
enriched in the neighborhood of at least one non-self GO term (the significance calls are largely supported in a 
randomization test, see Methods and Supplementary material 1, Table S3). Mirroring the trend in prokaryotes, 
1.0 out of 6.8 million, and 1.6 out of 5.4 million considered GO term pairs were significantly enriched in fungi 
and in metazoa, respectively.

By design, GO has many terms which describe very similar concepts and it is conceivable that a gene family 
might be assigned to either a GO term x or a similar GO term y due to noise in the annotation process. This has 
the potential to inflate the number of non-self GO terms we observe mutually enriched in neighborhoods. We 
have therefore filtered out related GO term pairs by using a measure of semantic similarity (Resnik similarity, 
RS, see Methods), which is defined using the structure of the Gene Ontology graph. Of note, because seman-
tic similarity is only defined within each GO sub-ontology but not across sub-ontologies, we present data for 
the ‘biological process’ GO terms. By conservatively requiring RS < 1 (prokaryotes), we effectively restrict to 
GO term pairs in the different branches of the ‘biological process’ GO graph, removing 60% of the pairs in our 
prokaryotic data (details in Methods). Even in this remaining set of semantically distant pairs of functions, there 
exist approximately 50 thousand (out of 180 thousand examined) significantly enriched pairs of GO terms in 
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genomic neighborhoods. For eukaryotes we required RS < 2 to call dissimilar GO terms (see Methods for justi-
fication). Consistently with data in prokaryotes, 0.3 million out of 1.8 million and 0.4 million out of 1.3 million 
semantically distant BP GO term pairs were significantly co-occuring in genomic neighborhoods. These high 
proportions mean that almost all gene functions are significantly enriched in the neighborhood of at least one 
other semantically distant gene function (100% of BP GO terms in prokaroytes, at FDR = 10%; 96.4% in Fungi, 
100% in Metazoa).

The effect sizes of such enrichments may be substantial: 72.1% of the observed log OR scores in prokaryotes 
are below 1st or above 99th percentile of log OR scores (corresponding to OR < 0.761 and OR >1.36 respectively) 

Figure 1.  Enrichment of diverse gene functions is widespread in genomic neighborhoods. (a) Distribution 
of neighborhood enrichment scores (log odds ratio, log OR) for all pairs of GO functions on original and 
randomized genomes of prokaryotes, fungi and metazoa. See also Supplementary 1, Figures S8, S11, S12 
and Supplementary 1, Table S3. Pairs with OR = 0 are not shown on graphs (see Methods; these pairs result 
in artefactually high or low log OR values after continuity correction). Information about the statistical 
significance of difference in distribution shape between observed and randomized distribution is expressed 
by the Kolmogorov-Smirnov D statistic and the corresponding p-value. (b) Number of GO terms that are 
semantically distant, but significantly enriched in genomic neighborhoods (FDR ≤ 10%) of each GO term, 
summarized in histograms for prokaryotes, fungi and metazoa. GO term pairs with Resnik similarity <1 (for 
prokaryotes) and RS < 2 (for eukaryotes) from the ‘biological process’ GO sub-ontology are tallied in the figure.
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in randomized genomes (Supplementary material 1, Table S3). The distributions of enrichments in neighbor-
hoods of four example gene functions are shown in Fig. 2, illustrating how there exist pairs of dissimilar functions 
that have neighborhood enrichments comparable to or higher than the enrichment of a gene function in its 
own neighborhood (histograms including statistical significance calls are shown in Supplementary 1, Figure S7). 
Finally, we examined separately a group of free-living microbes and a group of microbes that are pathogenic in 
mammals (labels from ProTraits phenotype database25, see Methods). Both sets of microbes yielded significantly 
different ORxy than obtained on randomized data for various pairs of gene categories (p < 2.2·10−16) and the 
substantially higher spread from randomized data was observed in both sets of microbes (Supplementary doc-
ument 1, Figure S45). Therefore the enrichment of dissimilar gene functions in neighborhoods does not appear 
specific to certain ecological preferences but instead represents a general trend.

Examples of semantically dissimilar gene functions enriched in genomic neighborhoods.  For 
instance, there is a trend in gene neighborhood organization where the GO term “carbohydrate metabolism” is 
2.12-fold enriched in the neighborhood of the semantically unrelated GO term “carbohydrate transport” (of note, 
the magnitude of this enrichment is similar to that of “carbohydrate metabolism” in its own neighborhood – 
2.53-fold). This co-occurrence is reminiscent of the textbook example of the lac operon in Escherichia coli, where 
the lacY gene encodes lactose permease, which shuttles lactose into the cell, while the neighboring lacZ gene 
encodes the enzyme β-galactosidase, which breaks down lactose into monosaccharides. Our analysis suggests 
that the proximity of genes encoding carbohydrate transporters and carbohydrate metabolizing enzymes is a 
systematic trend. This can provide evidence for inferring the presence of hypothesized transporter genes located 
next to known metabolic enzyme genes, and vice versa.

Other examples include significant enrichments of “DNA topological change” (ORxy = 1.42) and also of “nucle-
oside bisphosphate biosynthesis” (ORxy = 1.41) in the neighborhood of gene families annotated with “response 
to DNA damage stimulus”. This suggests some manner of coordinated regulation between different DNA 
repair-related activities. Furthermore, “lipid biosynthesis” genes are often in the neighborhood of “localization 
within membrane” genes (2.43) and “carbohydrate biosynthesis” is in the neighborhood of “cell envelope organiza-
tion” (2.10). These associations suggest coordinated activation of processes that generate building blocks of cellu-
lar structures, and subsequent processes that incorporate the building blocks into these structures. We highlight 
other examples of enriched GO term pairs for prokaryotic neighborhoods in Table 1 (see also Supplementary 
document 1, Table S2), while the exhaustive list is in Supplementary material 5.

While all GO term pairs listed above either have low semantic similarity or are from different GO 
sub-ontologies, there are cases where GO terms, distant in the GO graph, may sometimes overlap in the set of 
genes assigned to them24. This has the potential to inflate the observed enrichments, which might be due to the 
same genes artefactually creating two apparently distinct functional neighborhoods. However after quantifying 

Figure 2.  Semantically distant GO terms can be as strongly enriched in gene neighborhoods as the semantically 
close GO terms. Four example GO terms of the ‘Biological process’ ontology are shown. Histograms show 
numbers of GO terms at a certain log odds ratio (log OR) of the enrichment in gene neighborhood (for 
prokaryotic genomes). The GO terms in neighborhoods of a central GO function are broken down into three 
groups: the “CLPar” group (the central function itself plus all its parent functions in the GO graph), “CLMed” 
group (functions with Resnik semantic similarity >2 with the central function) and “Dist” group (Resnik ≤2 
with the central function). Instances of GO terms in the dissimilar “Dist” group and in the non-self “CLMed” 
group can be observed that have enrichments as high or higher than the self-enrichments (the “CLPar” 
functions, arrows on the plot).
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the overlap of genes assigned to the pairs of GO terms using Jaccard index, we find this not to be a common issue 
(Table 1; Supplementary Material 5). Furthermore, a randomization of gene positions supports that the observed 
enrichment of extreme OR values between distinct GO terms holds true for the semantically very close GO term 
pairs as well as for the semantically distant pairs (panels ‘CLPar’ and ‘Dist’ in Fig. S8). Overall, our data suggests 
that clustering of dissimilar gene functions – at least as defined by the GO – is very common in genomic neigh-
borhoods, occurring to a comparable extent as the well-known clustering of similar gene functions in genomes.

It is well-known that functionally similar terms found in gene neighborhoods are often co-expressed. We 
asked if this extends also to the functionally dissimilar terms that cluster in gene neighborhoods. To address 
this, we stratified GO term pairs into bins by semantic similarity, and compared the neighborhood-cooccurring 
versus non-cooccurring pairs by similarity of expression profiles in E. coli (Methods). Expectedly, we observed 
that high functional similarity (irrespective of gene neighborhoods) implies higher co-expression than low func-
tional similarity (Supplementary document 1, Table S10) and also that the highly similar function pairs were 
more strongly co-expressed when they are clustered in neighborhoods (3.2-fold difference in average Spearman 
correlation). Interestingly, we observed that also the lowly similar function pairs were more strongly co-expressed 
when clustered in neighborhoods than when they were not clustered (3.0-fold difference), even though the overall 
co-expression strength for lowly similar function pairs is not striking (Supplementary document 1, Table S10). 
This supports the notion that at least some of the diverse functions co-localized in gene neighborhoods are also 
co-expressed.

A general method to infer gene function based on neighborhood patterns.  Having demonstrated 
that genomic neighborhoods are significantly enriched in certain combinations of diverse gene functions, we 
asked if such neighborhood patterns can be used to establish a general method that predicts gene function. To 
evaluate this, we compared two established methods that propagate a gene function to neighboring genes, with a 
novel classifier that can draw on neighborhood co-occurrence of diverse gene functions to predict GO terms for 
COG gene families. The first method is a simple k-nearest neighbors (kNN) classifier that transfers known func-
tions to a COG gene family from the k neighboring gene families (with smallest average logarithmized distances 
across many genomes; Methods). The second classifier can transfer gene functions to neighbors additionally via 
indirect links: a gene network is constructed from neighborhoods and the gene function assignments diffuse 
across the links (using the GeneMania method26, herein referred to as the Gaussian Field Propagation (GFP) 
classifier). In addition to these known approaches, we introduced a third, novel classifier that can draw on both 
the enrichment of similar functions in neighborhoods and additionally the enrichment of semantically distant 
gene functions. For example, this method should be able to infer that a gene family deals with “carbohydrate 
metabolism” based on its neighbors being annotated with “carbohydrate metabolism” and additionally based on 
its neighbors dealing with “carbohydrate transport”, a semantically distant function in the GO graph. To this 

GOx Description
log OR 
GOx-GOx GOy Description

log OR 
GOx-GOy p Resnik J

GO:0005975 carbohydrate metabolic 
process 2.53 ∓ 0.01 GO:0008643 carbohydrate transport 2.12 ∓ 0.02 0.0 0.0 0.0

GO:0006260 DNA replication 2.99 ∓ 0.02 GO:0032506 cytokinetic process 1.41 ∓ 0.06 0.0 0.79 0.0

GO:0006974 cellular response to 
DNA damage stimulus 2.39 ∓ 0.02 GO:0006265 DNA topological change 1.42 ∓ 0.06 0.0 0.79 0.0

GO:0006974 cellular response to 
DNA damage stimulus 2.39 ∓ 0.02 GO:0033866 nucleoside bisphosphate 

biosynthetic process 1.41 ∓ 0.05 0.0 0.79 0.0

GO:0016051 carbohydrate 
biosynthetic process 4.16 ∓ 0.02 GO:0043163 cell envelope organization 2.1 ∓ 0.07 0.0 0.0 0.0

GO:0006457 protein folding 5.41 ∓ 0.02 GO:0016226 iron-sulfur cluster assembly 1.91 ∓ 0.08 0.0 0.52 0.0

GO:0046700 heterocycle catabolic 
process 1.15 ∓ 0.01 GO:0051180 vitamin transport 1.65 ∓ 0.08 0.0 0.01 0.01

GO:0006310 DNA recombination 3.09 ∓ 0.02 GO:0006952 defense response 1.02 ∓ 0.13 0.0 0.0 0.0

GO:0046903 Secretion 6.56 ∓ 0.03 GO:0006935 chemotaxis 3.6 ∓ 0.05 0.0 0.0 0.0

GO:0008610 lipid biosynthetic 
process 3.21 ∓ 0.02 GO:0051668 localization within 

membrane 2.43 ∓ 0.05 0.0 0.0 0.0

GO:0006865 amino acid transport 2.32 ∓ 0.04 GO:0009310 amine catabolic process 2.17 ∓ 0.13 0.0 0.0 0.0

GO:0006508 proteolysis 1.80 ∓ 0.02 GO:0019682
glyceraldehyde-3-
phosphate metabolic 
process

1.48 ∓ 0.05 0.0 0.95 0.0

Table 1.  Examples of dissimilar gene function pairs enriched in genomic neighborhoods. Data shown for 
“biological process” GO graph of the prokaryotic genomes. GOx-GOx denotes enrichment of a GO term s in its 
own neighborhood, while GOx-GOy denotes enrichment of the other GO term y in the neighborhood of GO 
term x. Enrichments are given as log odds ratio (log OR) +/− corresponding 95% confidence interval and the 
p-value for the association (by Z-test on log OR, one-tailed). “Resnik” denotes Resnik semantic similarity; this 
is an unbounded score where any value < 2 corresponds to very distant terms that reside in separate branches of 
the GO graph (meaning the closest common ancestor has information content <2). “J” is the Jaccard index that 
quantifies co-occurrence of gene functions in COG gene families from our prokaryotic data set, and can vary 
from 0 to 1.
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end, we employed a Random Forest classifier on a data set where examples are COG gene families, features are 
the normalized counts of every GO term in the neighborhood of that COG (across all genomes), and the target 
variable is the set of known GO term labels of the COG gene family; see Methods. In other words, from such a 
representation, the function of a gene can in principle be inferred from the presence of any function – or a com-
bination thereof – in the genomic neighborhood of the gene, as long as such a pattern occurs commonly enough 
to be recognized by the algorithm. We named this approach the “neighborhood function profile” (NFP) classifier.

We evaluated the accuracy of all methods in a cross-validation test (using the out-of-bag error statistic pro-
vided by Random Forest; see Methods). The average area under precision-recall curves (AUPRC) for GO terms 
in the prokaryotic dataset is 0.153 for the 10-NN classifier and, expectedly, a much improved 0.199 score for 
the network-based (GFP) classifier. Both methods operate by transferring an annotation across gene neighbor-
hoods, while the latter also uses indirect links to improve accuracy. However the NFP-based classifier, which 
can draw on diverse neighborhood patterns substantially improves over this, with a 0.266 average AUPRC in 
prokaryotes, a 34% increase (p < 10−10 for the increase over the next best method, one-tailed Wilcoxon test on 
AUPRC scores across GO categories; distributions of scores in Fig. 3, see also Supplementary 1, Figs. S16–S18). 
Similarly so, in the two groups of eukaryotic organisms, the AUPRC scores were significantly improved using the 
novel NFP method: for Fungi, the 0.0460 (for the 10-NN) increased to 0.0545 (for the NFP; p < 10−15) and for 
Metazoa, the increase is 0.0228 (for 10-NN) to 0.0267 (for NFP, p < 10−15; Fig. 3). The network diffusion approach 
applied to gene neighborhood data in eukaryotes did not on average bring benefits over the simpler 10-NN 
(Supplementary 1, Figs. S19–S24), therefore the latter is used as a baseline.

High predictive power of the Neighborhood Function Profile (NFP) classifier.  A more accurate 
classifier would be expected to provide a higher number of confident predictions. We quantified this increase pro-
vided by the predictive models based on NFP. In particular, we tallied the number of predictions (COG-GO term 
associations) made at a precision threshold of 50% (equivalent to 50% FDR) and additionally at a more stringent 
80% (20% FDR) for the three classifiers; Table 2. This reveals remarkable, several-fold increases in the amount 
of predictions afforded by the NFP in prokaryotes, fungi and metazoa, when considering the more general gene 
functions (information content (IC) between 2 and 4). In the highly specific gene functions (IC > 4), which are 
usually of higher interest, there is a substantial increase in new annotations provided by NFP for prokaryotes and 
fungi, and a more modest gain in metazoa. We further examined the diversity of predictions: in particular, we 

Figure 3.  The gene function profile of genomic neighborhoods enables a more accurate methodology to infer 
gene function. The distribution of area under the precision-recall curve (AUPRC) scores, measured in cross-
validation, for all examined gene functions (GO terms) is represented in prokaryotes (top), fungi (middle) and 
metazoa (bottom). The methods compared are the nearest neighbor (NN) classifiers (1-NN, 3-NN, 10-NN), 
a network-based approach (Gaussian Field Label Propagation, GFP) and finally the novel Neighbourhood 
Function Profile (NFP) method. See Supplementary 1, Figures S17, S20 and S23 for the area under ROC curve 
(AUC) scores. P-values are from a one-tailed Wilcoxon signed-rank test.
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asked if the new predictions afforded by NFP are largely added to the gene families that were already assigned 
predictions by the previous methods, or if NFP predictions instead cover new gene families. Our data suggested 
that the latter is the case (Supplementary 1, Tables S5–S7), because the number of COG gene families receiving at 
least one prediction is higher in NFP compared to the baseline classifiers.

Our gene neighborhood classifiers, as implemented, provide function predictions at the level of COG gene 
families (exhaustive list given in Supplementary material 2,3.). We also provide data showing how this reflects in 
the number of genes receiving predictions in certain model organisms (Supplementary document 1, Tables S8 and 
S9). For instance, in Escherichia coli, at precision of 50%, the number of novel predictions (gene-function pairs) 
is 7572 for the network approach, and increases to 10559 provided by the novel NFP classifier; similarly so in the 
pathogen Staphylococcus aureus, increasing from 4314 to 5386 by use of NFP; all counts given for gene functions 
with IC > 4. Eukaryotes, consistent with more modest AUPRC scores (see above), provide overall fewer predic-
tions, but increases from use of NFP are quite evident. The number of novel annotations at Pr = 50% substantially 
increased from 89 (10-NN) to 552 (NFP) for Saccharomyces cerevisiae and 87 to 282 for Schizosaccharomyces 
pombe, in the fungal predictor (Supplementary 1, Table S8). For metazoans, the increases were striking for the 
general gene functions (IC 2–4), with more than twofold higher number of predictions afforded by NFP at pre-
cision 50% for mouse, human or Drosophila melanogaster, compared to the next best method. The NFP gains 
were modest for highly specific gene functions with IC > 4 in Metazoa (Supplementary 1, Table S8). One possible 
explanation was the lower coverage with known functions (average 18 GO terms per gene in Metazoa versus 26 
in Fungi in the databases we used; see Methods). This might prevent NFP from discovering complex association 
patterns between gene functions in neighborhoods, while the simpler kNN classifier is less affected.

We examined another measure of the utility of the predictive models, based on the information accretion (IA) 
criterion27. In brief, IA weighs the predictions such as to give higher scores to higher information content (rarer) 
GO terms; see Methods. By this method, in prokaryotes, kNN predicts 2.69 bits/gene novel information, the 
GFP network approach 6.89 bits/gene, while the NFP increases this to 9.44 bits/gene; all given at precision = 50% 
(data at 50% and 80% thresholds are in Table 3, for visualization of proportions see Supplementary 1, Figs. S30 
and S31). Therefore, we estimate that NFP brings a 37% increase in coverage with predicted gene functions over 
a state-of-the-art genomic neighborhood method. This result is mirrored in two groups of eukaryotes we tested: 
in fungi, the increase was 0.70 (kNN), 1.37 (network) and 2.00 (NFP) bits/gene, while in Metazoa it was 0.70 
(kNN), 0.99 (network) increasing to 1.25 bits/gene in the NFP method (Table 3, Supplementary 1, Figs. S32–S35). 
In other words, in eukaryotes, the novel NFP method increases the predictive power by 46% (Fungi) and 26% 
(Metazoa) over a state-of-the art network approach for propagating gene function across neighborhoods.

NFP accuracy is augmented by semantically distant functions.  The above data indicate that a clas-
sifier based on the NFP – an exhaustive description of the composition of gene functions in a genomic neighbor-
hood – provides high accuracy and yields many additional function predictions. Next, we asked if this increase in 
accuracy of the NFP is due to the semantically distant GO terms in gene neighborhoods. To this end, we examined 
11 example gene functions, which have other semantically dissimilar functions enriched in their neighborhoods 
(by our ORxy measure, see above). As expected, the NFP classifier strongly outperforms the baseline kNN and the 
GFP classifiers for these functions (Supplementary 1, Fig. S28). Then, we created partial NFPs, which contained 
only the semantically distant functions (without ancestors), compared to the function being predicted (“Dist/Par”, 
having RS < 2). We contrasted this to the partial NFPs that contain only the function being predicted itself and 
its ancestors that are semantically close (“CLPar”, parents in the GO graph having RS ≥ 4 plus the GO function 
itself). Random Forest classifiers were trained on the two kinds of partial NFPs and cross-validation accuracy 

Dataset Method

Number of predictions 
(functions of any IC)

Number of predictions 
of general functions 
with 2 < IC ≤ 4

Number of predictions 
of specific functions 
with IC > 4

Precision 
0.5

Precision 
0.8

Precision 
0.5

Precision 
0.8

Precision 
0.5

Precision 
0.8

Prokaryotes

10-NN 31,759 4,828 3,642 1,093 5,664 1,942

GFP 61,418 15,094 11,740 3,089 13,194 4,763

NFP 88,579 25,635 26,448 7,247 16,804 6,228

Fungi

10-NN 65,370 448 17 0 1,284 448

GFP 140,255 20,020 3 2 0 0

NFP 178,687 20,204 3,592 355 7,668 1,579

Metazoa

10-NN 66,403 327 912 74 936 253

GFP 89,992 464 2,552 11 390 94

NFP 102,631 3,057 9,546 769 988 217

Table 2.  Number of predictions (associations between a gene function and a COG gene family) obtained 
using different gene function prediction methods based on neighborhoods. 10-NN, ten nearest neighbors; 
GFP, Gaussian Field Label Propagation (network-based approach); NFP, neighborhood function profile. IC, 
information content of GO term, where lower IC signifies more general functions. Bold numbers show the best 
method for a given combination of dataset, stringency and set of functions. The exhaustive list of annotations 
obtained by the NFP can be seen in Supplementary Material 2 and novel predictions in Supplementary 
Material 3.
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compared (Fig. 4). For 9 out of 11 functions, a higher accuracy was obtained from neighborhood features describ-
ing semantically distant functions (“Dist/Par”, mean AUPRC = 0.047 across gene functions) than from features 
describing the target function and its close parents (“CLPar”, mean AUPRC = 0.035). The latter is an implemen-
tation of the guilt-by-association principle using the same classifier and the same data representation; for 8 out 
of 11 the increase was significant (p < 0.0002; Wilcoxon one-sided paired test). For all 11 functions, using the 
full set of neighborhood features, including the close, intermediate-distance, and distant functions, significantly 
outperforms the default model using only close features. This suggests a benefit to predictive accuracy also from 

Dataset

Stringency 
(Precision score 
threshold) Method

Known 
annotations 
(bits/gene)

Recovered known 
annotations (bits/
gene)

Newly predicted 
annotations (bits/
gene)

Prokaryotes

0.5

10-NN

23.19

4.31 2.69

GFP 7.71 6.89

NFP 10.22 9.44

0.8

10-NN 1.16 0.15

GFP 3.09 0.77

NFP 4.78 1.14

Fungi

0.5

10-NN

27.91

1.08 0.7

GFP 1.96 1.37

NFP 2.59 2

0.8

10-NN 0.01 0.001

GFP 0.39 0.087

NFP 0.45 0.093

Metazoa

0.5

10-NN

19.05

1.01 0.7

GFP 1.34 0.99

NFP 1.56 1.25

0.8

10-NN 0.01 0.002

GFP 0.03 0.003

NFP 0.08 0.014

Table 3.  Amount of predicted information on gene function, measured using the ‘information accretion’ 
methodology and expressed as bits per gene. 10-NN, ten nearest neighbors; GFP, Gaussian Field Label 
Propagation (network-based approach); NFP, neighborhood function profile.

Figure 4.  Semantically distant functions in gene neighborhoods are important for accurate inference of 
gene function. Bars show accuracy (as AUPRC score, measured in crossvalidation) for predicting the eleven 
representative gene functions, using various types of neighborhood function profiles (NFP) that are listed in 
the legend. The “Full profile” are the full NFP of the ‘biological process’ GO graph, while the “CL/CLPar”, “Med/
Par” and “Dist/Par” represent the partial NFP consisting only of close, medium-distance and distant functions, 
respectively (the “/Par” denotes that parent GO terms of the target functions were removed). The “CLPar” 
partial profiles contain only the selected function and its semantically close parents, meaning that “CLPar” is an 
implementation of the standard approaches that transfer functions across neighborhoods. In many cases, the 
close (but non-self), medium-distance and distant functions are more predictive than CLPar, and the complete 
profile is the most predictive. Serving as a control, the removal of the significantly enriched functions (labeled 
as “/Enr” in the legend) from the partial NFP strongly reduces accuracy, either for the close functions (CL), the 
medium-distance (Med) or the distant functions (Dist). Bars are average AUPRC scores of 200 runs of cross-
validation of the Random Forest classifier, whereas error bars show standard deviation across the 200 runs.
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including the intermediate-distance functions. This analysis demonstrates that even when using the same statis-
tical methodology (Random Forest) and same type of data representation (NFP), the presence of semantically 
distant functions in genomic neighborhoods is often highly predictive of gene function. For more details on the 
experimental setup see Supplementary document 1, Section S2.

Generalizing this principle, we find that integrating all three GO sub-ontologies in a common predictor can 
provide further increases to accuracy (see Supplementary Document 1, section S3.10).

Validation on external data sets.  Our gene neighborhood-based NFP predictive models used 
cross-validation to obtain overall estimates of accuracy, and additionally to estimate the FDRs for thousands 
of individual predictions made in prokaryotes and eukaryotes (Supplementary material 2 and 3). To further 
support these estimates, we analyzed an external dataset of gene functions derived from the Critical Assessment 
of Function Prediction (CAFA 2) challenge data28 (https://biofunctionprediction.org/cafa/) (Supplementary 1, 
Section S3.9). Indeed, also on the external validation set, the NFP approach (average AUPRC: 0.207) again out-
performs the 10-NN method (AUPRC: 0.130); the difference is significant at p < 2.2 × 10−16 by Wilcoxon test, 
one-tailed). The average AUPRC of 0.207 on the external validation set is broadly consistent with the average 
AUPRC of 0.266 on crossvalidation. The AUPRC scores for the individual GO categories were significantly cor-
related between crossvalidation and the external set (Supplementary 1, Fig. S36).

External validation of eukaryotic predictive models also shows higher accuracy for NFP (average AUPRC: 
0.065 in Fungi, 0.025 in Metazoa), compared to the (next best) 10-NN approach (0.055 in Fungi, 0.020 
in Metazoa); the differences are significant at p < 5 × 10−16 in Fungi and Metazoa. These scores for the NFP 
predictions on the external set are largely similar to those originally obtained in crossvalidation for the two 
groups (external 0.065 and 0.025 for Fungi and Metazoa, versus crossvalidation 0.0545 and 0.0267 respectively; 
Supplementary 1, Fig. S37).

In summary, external validation supports that NFP outperforms previous approaches that propagate gene 
functions across neighborhoods, and additionally provides credibility to the cross-validation estimates of accu-
racy. The set of predictions that we supply as Supplementary material 2,3 may be used to prioritize further vali-
dation work. The FDR score provided for each prediction allows making informed decisions on prioritizing the 
predictions to validate.

Gene neighborhood composition can predict phenotype of individuals.  Predicting phenotype 
from the genome sequence of an individual is a central goal in modern genetics. While single-nucleotide variants 
and indels are commonly considered in such analyses29,30, structural variants also have considerable potential to 
affect gene regulation and may therefore bear on the phenotype. Encouraged by the high accuracy of the NFP 
classifiers in predicting gene function based on gene neighborhood composition, we therefore asked if a related 
method could be used to infer phenotype from gene order observed in individuals in a population. We focused on 
prokaryotes, for two reasons. First, the NFP classifiers were more accurate for prokaryotes, which is likely at least 
in part due to a much larger set of sequenced taxa currently available. Second, copy number-neutral structural 
variants are known to be abundant even between closely related microbial strains and affect the major part of 
the genome therein. Moreover, our recent work has shown that across prokaryotic species, many phenotypes are 
strongly statistically associated with certain gene neighborhoods25. This motivated us to examine to what extent 
this holds true also for individuals (strains) of one species and to what extent are the associations with neighbor-
hoods predictive. We have therefore examined a previous data set of 696 naturally-occurring E. coli strains that 
have been systematically experimentally tested for 151 phenotypes (Methods), such as the ability to metabolize 
certain substrates or the resistance to a variety of toxins and antibiotics30. In the original work, occurrence of del-
eterious variants, such as nonsense variants or frameshifting indels in certain genes, was associated with specific 
phenotypic outcomes.

Here, as a baseline, we use conditional scores (CS) of Galardini et al., which are an estimate of gene disruption 
in a particular strain, combined with the phenotypes that are known to result from loss-of-function mutations 
for each gene30. Upon computing the AUC and AUPRC predictive performance measures for each phenotypic 
trait (here encoded as a binary outcome; see Methods) based on the CS, we obtained the median AUC of 0.672 
(0.591–0.736; Q1–Q3) across the 151 phenotypes (Fig. 5a). Using the CS as input to a Random Forest algorithm 
yields slightly better performance with a median AUC of 0.679 (0.473–0.796; Q1–Q3), however the difference in 
AUC score distribution is is not significant (p = 0.276, one-sided Wilcoxon signed-rank test); see Supplementary 
document 1, Section S3.11.

Next, we created a NFP dataset from this genomic data, where examples are E. coli strains, while features are 
frequencies of each GO term in the neighbourhood of each COG (i.e. functional neighbourhoods computed for 
each COG occurring in the genome of an E. coli strain). The resulting dataset is sparse and contains a very large 
number (nCOG × nGO) of features. A principal components (PC) analysis was therefore applied to reduce this data 
set to 228 PCs that provide a compact representation of the gene function composition of gene neighborhoods 
across many gene families, and which were used to train a Random Forest classifier. This yielded NFP models 
with broadly improved accuracy in predicting phenotype, resulting in out-of-bag AUC scores of 0.715 (0.480–
0.815; median, Q1–Q3) across the phenotypes. In specific, 42 out of 151 phenotypes had a significant increase 
in accuracy (FDR = 20%, DeLong test) over the baseline classifier that draws on deleterious point mutations 
and indels and gene presence/absence. In contrast, only 9 of 151 phenotypes had significantly reduced accuracy 
(FDR = 20%, DeLong test) in the NFP over the baseline. Overall this suggests that composition of gene neighbor-
hoods is substantially associated with phenotype.

The baseline classifier draws on deleterious mutations and on alterations in gene content, but not on the 
copy-number neutral structural variation, i.e. that which does not result in net gene gain or loss, but instead 
manifests in changed gene order. Broadly, the effects of the deleterious point mutations/indels on the one hand 
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and the copy-number neutral structural variants on the other hand are expected to be qualitatively different – 
the former commonly abolish or modify protein function, while the latter commonly affect gene regulation. We 
therefore hypothesized that the two types of variants need to be considered jointly to predict phenotype of indi-
viduals more accurately. This was tested by constructing an ensemble classifier (see Supplementary Document 1, 
Section S3.11, and Supplementary 1, Figs. S41, S42 for details) that results in further significant increases (AUC 
0.761; Q1–Q3: 0.673–0.848) over the baseline and also over the NFP classifier (pbaseline = 1.0·10−11,pNFP = 1.6·10−9, 
one-sided Wilcoxon signed-rank test). There was a significant increase in accuracy (FDR = 20%, DeLong test) 
over the baseline model that draws only on deleterious gene variants when predicting 62 (out of 151) phenotypes, 
while only 10 phenotypes showed a significant decrease in accuracy over the baseline, signalling an increase in 
predictive ability for many different phenotypes.

We highlight some examples. The phenotype “Trimethoprim.A22”, which describes growth inhibition by a 
combination of two antibiotics, can be predicted by the baseline method (drawing on deleterious mutations) 
such that, at a precision of 0.5, only 6% of the strains exhibiting the growth phenotype are recovered by the 
model (recall = 0.06; estimates from precision-recall curves in crossvalidation; Fig. 5b). In contrast, the ensemble 
method which combines the mutations and the structural variants can recover 28% of the strains exhibiting the 
growth phenotype (recall = 0.28) at the same precision, which is approx. a four-fold increase. Furthermore, the 
phenotype “Doxycycline.Pyocyanin” which describes sensitivity to a combined treatment by an antibiotic and 
a reactive oxygen species-generating toxin, does not yield any predictions (recall = 0) at a precision threshold 
of 50% when drawing on mutations only, but recovers 27% of the strains known to exhibit growth phenotypes 
(Fig. 5b) when considering also the gene neighborhoods encoded via their gene function profile. This data for 
other phenotypes is listed in Supplementary Material 4. This demonstrates that structural variation in the genome 
of individuals can be used to predict many phenotypes by drawing on the NFP representation of gene ordering 
along the chromosomes.

Discussion
Our work characterizes the distribution of gene function across genomic neighborhoods in hundreds of genomes. 
We detected the well-known phenomenon where genes with similar function cluster together in eukaryotic and 
prokaryotic genomes. However, the same analysis revealed that another type of genomic pattern is very common 
– the clustering of certain pairs of gene functions that appear unrelated, measured either by their proximity in 
the Gene Ontology graph (via the Resnik similarity) or by the overlap in genes assigned to the functions (via the 

Figure 5.  Predicting phenotypes of individuals from the effects of structural variants on the composition 
of gene neighborhoods. (a) Distribution of predictive models’ AUC scores (top-left) and AUPRC scores 
(top-right) across 151 Escherichia coli phenotypes, estimated in crossvalidation. The baseline classifier 
predicts phenotype from the scores based on gene disruption by small variants. The PCA-NFP classifier 
predicts from neighborhood function profiles, which are a representation of how structural variants 
affect genomic neighborhoods. The Ensemble classifier is a combination of both sources of data (see 
Supplementary 1, Section S3.11). (b) The cross-validation receiver operating characteristic (ROC) curv of a 
baseline method based on small genetic variants and gene content (green) and the ensemble method (blue) that 
also includes copy number neutral structural variants, shown for two example phenotypes. Additional examples 
are in Supplementary 1, Fig. S43.
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Jaccard coefficient). The prevalence of such clustering is very high: while 92.6% of all examined gene functions in 
prokaryotes are significantly enriched in their own neighborhood or in the neighborhood of a related function, 
100% of all functions are so in a neighborhood of at least one unrelated function (at a stringent threshold of 
FDR = 1%; see Methods). Similarly so, also in the eukaryotic clades we have examined, a higher number of gene 
functions have an unrelated function significantly enriched in their neighborhood than have a related function 
enriched (Methods for details). In other words, while organization following the similarity principle is certainly 
prevalent in genome neighborhoods, other patterns appear similarly or more widespread. Given that the effect 
sizes of these between-function neighborhood enrichments are often similar to the within-function enrichment, 
it is conceivable that this widespread pattern is too a result of selective forces shaping genome organization, 
although the underlying evolutionary mechanisms remain to be elucidated in future work. Irrespective of the 
mechanism that created it, this pattern is sufficiently strong that it can yield accurate predictive models to infer 
gene function and also the phenotype of individuals.

If indeed the clustering between unrelated gene functions brings a selective benefit to the organism, one pos-
sible interpretation is that the clustered pairs of functions play complementary roles in the physiology of the 
organism. This raises the possibility that such a pair of complementary functions, whose genes are commonly 
inter-linked by functional associations (here, inferred from genomic neighborhoods), might be instead better 
merged into a single large functional group, which would more closely reflect biological reality. In other words, 
are these pairs of complementary function seen by evolution simply as a single function? An argument against 
this is that such pairs of gene functions are not commonly annotated to the same gene families (low Jaccard 
index of example GO terms in Table 1; exhaustive list in Supplementary material 5), even if they do commonly 
occur in the neighborhood of each other. More generally, all significantly enriched pairs of GO terms in neigh-
borhoods tend to overall have very low gene overlap, with 92% of these pairs having Jaccard index < 0.1 in genes 
assigned to them (Supplementary 1, Fig. S15).

Turning to the example of the E. coli lac operon and the corresponding functions “carbohydrate transport” 
and “carbohydrate metabolism”: it is evident that these molecular functions must be distinct due to a different 
molecular basis for transmembrane transport and for enzymatic cleavage. It is also clear from genomic data that 
the functions are distinct because they occur independently i.e. they do not co-occur in the same gene families (0 
co-occurrences out of 3475 examined prokaryotic COGs; 2.63 co-occurrences of the two functions expected at 
random, given 199/3475 COGs annotated with “carbohydrate transport” and 46/3475 annotated with “carbohy-
drate metabolism”). Generalizing this pattern in the lac operon, it is plausible that many other similar neighbor-
hoods exist that incorporate both transport and metabolism of compounds, reaping benefit from co-regulated 
expression of such complementary gene functions. The NFP approach for predicting gene function and pheno-
type is able to leverage such systematic co-occurrences, and propagate such dissimilar but co-occurring gene 
functions across neighborhoods in a systematic manner.

Such pairs of putatively complementary gene functions might be thought of as child functions of a single 
hypothetical parent function, which currently does not exist in the Gene Ontology graph. (If it did exist, then the 
Resnik semantic similarity statistic would mark this pair of functions as closely related.) This suggests a possible 
manner of enhancing of the current GO graph based on this association data, which would involve creating 
additional parent nodes that bridge the semantically distant, but biologically related GO terms. Of note, there 
were previous suggestions to derive alternate GO graphs by drawing on co-occurrence of function annotations in 
the same genes24, which is distinct from what we report here. The complementary functions we propose do not 
co-occur in the same genes, but are instead associated with each other – in the current analysis, via conserved 
gene neighborhoods, but it is conceivable that functional interactions inferred from other large-scale data might 
yield similar results. Past work31 has proposed that some GO terms may be considered ‘classes’, whose member 
genes are densely interconnected by functional associations inferred from large-scale data, and other GO terms 
are ‘categories’, whose members are not linked by functional associations, and which therefore represent artificial 
concepts. Here, we see widespread evidence for a third type of pattern in relation to the GO graph of gene func-
tions, wherein pairs of distant GO terms are linked by numerous functional associations bridging the two GO 
terms. This suggests that such pairs (and possibly larger groups) of GO terms that are significantly interlinked 
provide a biologically meaningful manner for organizing the catalogue of gene function, with practical implica-
tions for automated inference of gene function and phenotype from the genome sequence.

Methods
Methodology overview.  In this work, we assess a novel gene neighbourhood representation, called 
“Neighbourhood function profile” (NFP), for gene function prediction in 1669 prokaryotic organisms, 49 fun-
gal and 80 metazoan organisms. To predict gene functions, we used Clusters of Orthologous Groups32 (COGs 
and NOGs) gene families, derived from Eggnog database33 (version 4.0 for prokaryotic and 5.1 for eukaryotic 
organisms), henceforth collectively referred to as COGs. We have assigned functions from Gene Ontology34 to 
gene families (COGs) as those occurring in at least 50% genes assigned to a given COG. The resulting datasets 
contain: a) 3475 COGs (entities) and 1048 GO functions (targets) obtained from the prokaryotic genomes, b) 
15969 COGs and 2617 GO functions obtained from the fungal genomes, c) 9187 COGs and 2336 GO functions 
obtained from the metazoan genomes. We used only complete genomes for prokaryotic organisms whereas the 
Fungi and Metazoa genomes consisted of complete genomes (chromosomal data) and the non-complete genomes 
(contigs, nonchromosomal data).

Methodology description.  For a given set of genes G and a set of COGs Ω, we define a mapping γ:G → 
P(Ω) which assigns each gene to one or more corresponding COGs. Similarly, for a set of gene functions ∑, map-
ping δ:Ω → P(∑) mapps COGs to a corresponding set of gene functions contained within GO ontology.
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For a given set of organisms Θ, a set of genes G, a selected gene gi ∈ Θl a number of neighboring positions from 
either side of the gene k ∈ ℵ, a set of COGs Ω and a set of GO functions ∑, a functional gene neighbourhood of gi 
in the organism Θl is defined as a count of all GO functions occurring in COGs assigned to genes in its 
k-neighbourhood. Formally: ∪Θ δ= ∑ + ∪γ γ= ∈ ∈+ −

Nbh g go cog( , , ) (1 ( ( ))) (1 (i l k s
k

go cog g go cog g1 ( ) ( )k i s modn k i s modn( ) ( )
  

cog( ))) )δ , for prokaryotic organisms and ∪Θ δ= ∑ + ∪γ γ= ∈ ∈− −
Nbh g go cog( , , ) (1 ( ( ))) (1 (i l k s

k
go cog g go cog g1 ( ) ( )k i s k i s( ) ( )

cog( ))) )δ , for eukaryotic organisms where gs are genes contained in a k-neighbourhood of gene gi and n denotes 
the total size of a genome. Thus, the result of gene neighbourhood computation for all go functions is a tuple of 
size |∑| containing corresponding occurrence frequencies of all GO functions in the k-neighbourhood of gi. In 
our data analyses, we use COGs as entities, thus each COG is associated with a vector containing |∑| elements, 
corresponding to occurrence of GO functions in its k-neighbourhood, derived from neighbourhoods of corre-
sponding genes. The neighbourhood frequencies computed for a gene gi are added to the frequency vector of all 
COGs such that cogs ∈ γ(gi). Thus, Θ Θ= ∑ Θ γ∈ | ∈NbhO cog go Nbh g go( , , ) ( , , )i l k g cog g k l k{ ( )}k l i k

 and the final features 
are computed as NbhD cog go NbhO cog go go go( , , ) ( , , )/i k i l k k kl

Θ Θ Θ Θ= ∑ | |.Θ Θ∈  denotes a set of all organisms 
containing at least one COG with function gok. Note that genes that are not assigned to any COG do not add to 
function frequency count in the neighbourhoods. Functional neighbourhoods of each COG contain frequencies 
for functions with a wide range of semantic similarity to the GO categories assigned to this COG.

We trained a Random Forest of Predictive Clustering Trees35 model on this features to predict gene functions. 
Performance of this methodology is compared to the biological (1-NN) and Gaussian Field Label Propagation 
model36, trained on the average of logarithmic distances of pairs of COGs in different organisms. For a pair of 
genes g c c( , )i x yi i

=  and g c c( , )i x yj j
= , where c c c c, , ,x y x yi i j j

 are coordinates of corresponding genes in a genome. 
The logarithmic distance of two genes contained in a prokaryotic organism is computed as:

d g g log min c c c n c c c( ) ( ( , ) ), ifi j x y y x x y, 2 i j i j i j
ε= | | | − − | + >−

d g g log min c c c n c c c( ) ( ( , ) ), ifi j x y y x x y, 2 j i j i j i
ε= | | | − − | + >−

If two genes are overlapping, we define their distance to equal small constant ε. In our work, we use ε = 10−10. 
Distances in eukaryotic organisms are computed as:

ε= | | + >−d g g log c c c c( ) ( ), ifi j x y x y, 2 i j i j

d g g log c c c c( ) ( ), ifi j x y x y, 2 j i j i
ε= | | + >−

The average logarithm distance of pair of COGs is computed as: Θ = ∑ ∑Θ Θ Θ γ γ∈ ∈ | ∈ ∈d cog cog( , , ) (i j g g cog g cog g( , ) ( ), ( )j k l j i k j l

Θ γ γ| ∈ | ∈ ∈ |d g g g g cog g cog g( , ))/( {( , ) ( ), ( )} )k l k l j i k j l
The Random Forest and the k-NN algorithm perform hierarchical multi-label classification whereas the 

Gaussian Field Label Propagation model performs single class classification. Methods that perform hierarchical 
multi-label classification simultaneously predict multiple gene functions to each COG contained in the dataset 
utilizing information about the hierarchical structure of the GO ontology. Gaussian Field Label Propagation 
needs to be run for each gene function separately, which makes the approach significantly more time consuming.

An overview of the approach is provided in Fig. 6.

Method evaluation and relevance.  All methods were evaluated in a cross-validation setting using the 
3475 prokaryotic COG gene families and 1048 corresponding GO terms, 15741 fungal COGs and 2617 corre-
sponding GO terms, and 9185 metazoan COGs and 2336 corresponding GO terms. The k-NN and GFP were 
evaluated using leave-one-out cross-validation and the NFP using the out-of-bag estimates using a forest of 600 
trees. The out-of-bag estimate is used in NFP, since it significantly reduces validation time of a random forest 
model and provides comparable estimate of error to cross-validation.

Since assessing the importance of enriched functions in genomic neighborhoods for gene function prediction 
was a central goal of our work, we evaluated our approach (that utilizes this information) by comparing it with 
other state-of-the-art approaches that use information about gene proximity, but lack the information about 
the enriched semantically distant functions. Increasing predictive performance of genomic neighborhood-based 
methods may significantly advance our knowledge about the many genes of unknown function, particularly since 
these methodologies can be easily incorporated into an ensemble model with other genomic predictors, which - 
due to complementarity of predictions of different models - yields superior performance37.

Association testing of GO functions in neighborhoods.  To measure the strength of association between 
different pairs of GO functions from our data, we first computed the contingency tables that contain the following 
components: a) COG contains GOx and Neighborhood contains GOy, b) COG contains GOx and Neighbourhood 
does not contain GOy, c) COG does not contain GOx and Neighbourhood contains GOy, d) COG does not contain 
GOx and Neighbourhood does not contain GOy.

From these tables, we compute the Odds ratio OR = a c
b d

/
/

 and ultimately the Log Odds ratio log2(OR). In addi-
tion to computing ORs and log odds ratios and testing its statistical significance using the Fisher exact test (for 
ORs) and z-test for log2(OR) >0, we also provide empirical evidence of strength of association. This is done by 
computing the number (percentage) of significantly enriched pairs of functions computed on the original dataset 
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with higher or at least two-times higher (2x or more) log2(OR) than the corresponding pair computed on the 
randomized dataset (gene locations are permuted in the genome).

For a GO term with frequency p(GO), the information content (IC) of a GO is defined as −log2(p(GO)). The 
Resnik Similarity (RS) of a pair of GO terms GOx,GOy is defined as RS(GOx,GOy) = IC(comAnc), where comAnc 
denotes the most informative common ancestor (the one with the largest IC). We use RS < 2 as a criteria for 
selecting pairs of distant GO functions for which we compute enrichments in Eukaryotic organisms, the reason 
for this choice is that GO frequencies on eukaryotic organisms are empirically computed from the data, thus 
upper level (children of the root) of GO ontology have Information Content higher than 1.

Association testing of GO functions in neighborhoods.  In the Discussion section of this text, for 
some function GOx we say that GOy is a related function if: RS(GOx,GOy) ≥6 for GOx, GOy contained in the same 
namespace of the GO ontology, or if  J(GOx,GOy) ≥0.6 for GOx, GOy not contained in the same namespace of GO. 
We observed 6615 related pairs of functions with FDR < 1% in prokaryotic dataset. For some function GOx, we 
say that GOy is “unrelated function” if RS(GOx,GOy) <1, for GOx, GOy contained in the same namespace of the 
GO ontology, or if  J(GOx,GOy) < 0.05 for GOx, GOy not contained in the same namespace of GO. We observed 
204202 such pairs with FDR < 1% in prokaryotic dataset. These statistics are (47.5% − 8853 pairs, 97% − 878850 
pairs) for Fungi and (99.9% − 36122 pairs, 100% − 1256151 pairs) for Metazoa.

The 11 gene functions analyzed individually in the manuscript are all taken from the same namespace of GO 
ontology, to prevent considering potentially synonymous functions from different namespaces as semantically 
distant.

For a given mapping ξ:∑ → P(Ω), that maps a GO function to a set of COGs which contain this function, we 
use J GO GO( , )x y

GO GO

GO GO

( ) ( )

( )
x y

x y
=

∩
∪

ζ ζ

ζ

| |

| |
 to measure the level of circularity of pairs of functions (especially these from 

different namespaces of GO ontology).
The information accretion of a function GOx was computed as ia(GOx)= −log2(P(GOx|Par(GOx))), where Par 

denotes a set of parent nodes of GOx. This implies that if some model predicts GO function that does not have 
high probability of occurrence, given the parent nodes, it gets significantly larger accretion score.

Figure 6.  Overview of the neighborhood function profile (NFP) methodology to predict gene function. 
Location-based approaches are trained on pairwise COG/NOG distances of corresponding genes contained 
within genome of different prokaryotic and eukaryotic organisms. The obtained distances are used to create 
a similarity table to train the k-NN model and the association network to train the Gaussian Field Label 
Propagation approach. Functional neighbourhoods are used to create a normalized frequency matrix which is 
used to train the Random Forest of Predictive Clustering trees model. “COG” in the Figure is used to denote 
both COG and NOG. Target Hi denotes the sub-hierarchy of GO terms associated with COGi (sub-hierarchy 
contains information about the GO functions assigned to a COG and the parent-child relations between these 
GO functions).
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The average number of annotations per annotated gene.  To assess the potential reason for a differ-
ence in predictive power of all models between Fungi and Metazoa dataset, we computed the average number of 
annotations per annotated gene. This information is important since it has direct impact on the stability and the 
amount of information contained in gene functional neighbourhoods.

Dataset for predicting phenotypes.  The NFP dataset used to predict phenotypes in different strains of E. 
coli was constructed so that E. coli strains are examples (entities), whereas features are COG/NOG-GO function 
pairs (frequency of occurrence of each GO in the neighbourhood of each COG/NOG contained in each E. coli 
strain). Thus, the whole table depicted in Fig. 6 is contained in each row of our NFP dataset for phenotype predic-
tion. These features (sparse in nature) were used to create 228 principal components using PCA.

Target variables in analyses of phenotypes.  The Phenotypic dataset contains 151 target variables (phe-
notypes) that denote if a fitness defect has been detected (value 1) after application of specific combination of 
drugs or not (value 0).

Dividing bacteria into two subgroups by ecology.  To divide the prokaryotic organisms contained in 
our dataset into free-living and those associated to mammalian host (pathogenic in mammals), we used the 
ProTraits database25. We selected these prokaryotic strains having the integrated score above 90%. Taxonomy IDs 
obtained from these strains were used to obtain species-level taxonomy id, which is used to assign all strains of 
this particular species to the required subset. LOR distributions were computed using genomes of these subsets 
of bacteria.

Assessing correlation between functional enrichments and gene co-expressions.  In order to 
determine if the enrichment phenomenon of semantically distant functions can be potentially explained by gene 
co-expression, we computed the pairwise gene co-expressions on the E. coli bacteria (using the gene expression 
data obtained from the Colombos database38). Next, we computed the average correlation coefficient of all pairs 
of genes associated to the GO function pairs that are semantically distant (Resnik < 2) but significantly enriched 
(LOR > 2 used) and compared it to the average correlation coefficient of all pairs of genes associated to the GO 
function pairs that are semantically similar (divided by semantic similarity in the intervals [2,4 > , [4,6 >,> = 6) 
and that are significantly enriched (LOR > 2). As a control, we use the average gene correlation for genes asso-
ciated to the pairs of GO functions (divided by semantic similarity as above) that are not significantly enriched 
and have LOR values in the [−0.5,0.5] interval. The obtained results show that the average correlation coefficient 
obtained consistently increases with the increase of semantic similarity in both groups. It is evident that the aver-
age correlation coefficients have higher values for genes associated to the enriched GO pairs, however the number 
of available data points (4) is too small to prove statistical significance of the difference in correlation between 
these groups. Overall, we did not detect correlation between enrichments of semantically distant pairs of GO 
functions and the average co-expression of genes associated to these functions.

Software.  All figures were created in the R Studio development environment and plotted using the R lan-
guage (versions 3.1.1 and 3.1.2), and R packages SemDist 1.3.0, ggrepel 0.5, gplots 2.17.0, seriation 1.2.0, viridis 
0.3.4, PRROC 1.1, pROC 1.8. Specific programs to perform various analyses, create features, analyse the results 
and prepare data for plots were created in Java (JDK versions 7 and 8) and Java libraries Commons_io 2.4, 
Common_lang3 3.5, Commons_math3 3.3, jarchivelib 0.7.1, javatuples 1.2, weka 3.7.12, FastRandomForest 0.99, 
and jsc.

Data availability
Data is available via the supplementary material of this publication or upon request from authors.
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